Instruction MI IDP10-F May 2010

I/A Series® Pressure Transmitters

IDP10 Differential Pressure with FOUNDATION Fieldbus Communication

Installation, Operation, Calibration, Configuration, and Maintenance

Contents

Figures	. v
Tables	vi
1. Introduction	1
General Description	. 1
Reference Documents	. 2
Transmitter Identification	. 3
Standard Specifications	. 5
Product Safety Specifications ATEX and IECEx Warnings ATEX Compliance Documents IECEx Compliance Documents	12 12
2. Installation	13
Transmitter Mounting Process Mounting Manifold Mounted Transmitter Pipe or Surface Mounting Standard Mounting Bracket Universal Mounting Bracket	13 15 16 16
Venting and Draining Traditional Structure LP1 Low Profile Structure LP2 Low Profile Structure	21 21
Installation of Flow Measurement Piping	22
Filling System with Seal Liquid	25
Positioning the Housing	26
Positioning the Display	26
Setting the Write Protect Jumper	27
Cover Locks	27
Wiring Accessing Transmitter Field Terminals Wiring Notes Wiring the Transmitter	28 28 31
Installing the Fieldbus Software	31
Putting a Differential Pressure Transmitter Into Operation	32
Taking a Differential Pressure Transmitter Out of Operation	33

3. Operation Via Local Display	35
Entering Numerical Values	36
Viewing the Database	37
Viewing the Pressure Range	37
Testing the Display	37
4. Calibration	39
Calibration Setup	39
Calibration Using the Optional Local Display	41
Zero Adjustment Using External Zero Button	43
Calibration from a Fieldbus Host	44
5. Configuration	47
Configuration Using the Optional Local Display	47
Character Lists	
Configuration Using a Fieldbus Host Configuration Procedure Using a Fieldbus Host Configuring the Transducer Block Configuring the Scaling Parameters in the Analog Input Block Application Specific Configurations Changing the Primary Range Values (Reranging) by Editing the Transducer Block Parameters Disabling the Link Active Scheduler (LAS)	54 54 55 58 62
6. Maintenance	63
Troubleshooting Simulation Mode Restart Switch Mode Checklist Schedule Download Checklist Block Errors Interboard Communication Errors/Status	63 64 65 65
Parts Replacement Replacing the Terminal Block Assembly Replacing the Electronics Module Assembly Removing and Reinstalling a Housing Assembly Adding the Optional Display Replacing the Sensor Assembly	68 68 70 71
Rotating Process Covers for Venting	
List of Parameters 75	
т 1	00

Figures

1	Transmitter Identification
2	Top Level Structure Diagram
3	Minimum Allowable Absolute Pressure vs. Process Temperature
	with Fluorinert Fill Fluid
4	Typical Mounting of an IDP Transmitter Supported by Process Piping 14
5	Typical Mounting of an IDP Transmitter Supported by a Bypass Manifold
6	Typical Mounting of IDP Transmitter on Coplanar% Manifold
7	Pipe or Surface Mounted Transmitter Using a Standard Bracket
8	Examples of Mounting With a Standard Bracket
9	Details of a Universal Bracket
10	Mounting a Transmitter with Traditional Structure Using a Universal Bracket
11	Vertical Pipe Mounting a Transmitter with LP2 Structure Using a Universal Bracket 19
12	Horizontal Mounting a Transmitter with LP2 Structure Using a Universal Bracket 20
13	Vertical Mounting - Cavity Draining
14	Vertical Mounting - Cavity Venting
15	Horizontal Mounting - Cavity Venting
16	Vertical Mounting - Cavity Venting
17	Horizontal Mounting - Cavity Venting and Draining
18	Cavity Venting and Draining
19	Example of Horizontal Process Line Installation
20	Example of Vertical Process Line Installation
21	Housing Screw or Clip Location
22	Write Protection Jumper
23	Cover Lock Location
24	Accessing Field Terminals
25	Identification of Field Terminals
26	Wiring Diagram of Typical Foundation Fieldbus Transmitter Installation
27	Local Display Module
28	Top Level Structure Diagram
29	Display Test Segment Patterns
30	Field Calibration Setup
31	Bench Calibration Setup
32	Calibration Structure Diagram
33	Configuration Structure Diagram (1 of 3)
34	Configuration Structure Diagram (2 of 3)
35	Configuration Structure Diagram (3 of 3)
36	Simulation Jumper
37	Replacing the Electronics Module Assembly and Display
38	Replacing the Sensor Assembly
39	Replacing the Sensor Assembly (pvdf Inserts)
40	Sensor Cavity Venting and Draining

Tables

1	Reference Documents	2
2	Minimum Supply Voltage Requirements	9
3	Electrical Safety Specifications	10
4	Minimum Supply Voltage Requirements	29
5	Parameters Configurable from the Local Display	47
6	Alphanumeric Character List	53
7	Numeric Character List	53
8	Unit names and Unit Codes	55
9	Flow Applications	58
10	Pressure Applications	59
11	Open Tank or Dry Leg Level Applications	60
12	Wet Leg Level and Dual Seal Applications	61
13	Block Errors	65
14	Configuration Errors	66
15	Fieldbus Parameters	75

1. Introduction

General Description

The IDP10-F intelligent differential pressure transmitters measure the difference between two pressures applied to opposite sides of a silicon strain gauge microsensor within the sensor assembly. This microsensor converts differential pressure to a change in resistance. The resistance change is then converted to a FOUNDATION fieldbus digital signal proportional to the differential pressure or to the square root of the differential pressure. This measurement signal is transmitted to remote receivers over the same two wires that supply power to the transmitter electronics. These wires also carry two-way data signals between the transmitter and remote communication devices.

The transmitter is often used for measuring fluid flow rates across a primary device such as an orifice plate, but can also be used for other types of differential pressure measurements such as liquid level, interface level, or density measurements. The IDP10 can also be supplied with direct connected or remote pressure seals to isolate the measuring element from corrosive or viscous fluids. For more detailed information on the principle of operation of the transmitter, refer to TI 037-096, available from Invensys.

The measurement signal is a FOUNDATION fieldbus digital signal for full communication with any FOUNDATION fieldbus host equipped with a FOUNDATION fieldbus Interface Module. The communication functionality permits you to reconfigure a transmitter from a remote fieldbus host personal computer, or I/A Series system equipped with a FOUNDATION fieldbus Interface Module.

The FOUNDATION fieldbus is an all digital, serial, two-way communication system that runs at 31.25 kbps, interconnecting a fieldbus host and various field devices such as process sensors/transmitters, valves/actuators, and controllers — all connected in parallel to the same bus. Both ends of the bus must be terminated with standard characteristic impedance networks to minimize reflected signals. Power to all devices is supplied by a dc fieldbus power source connected anywhere on the bus.

- NOTE

The power supply must be a fieldbus-specific power supply.

The communication signals between a fieldbus host and all other bus-connected devices, which are superimposed on the dc power signal on the bus, are controlled according to a strict cycle schedule and protocol. During intervals when control and data signals are not being transmitted according to the schedule, the devices are free to communicate with each other for such functions as local PID control, trend recording/indicating, etc.

The FOUNDATION fieldbus uses "Function Blocks" (standardized automation functions) to implement measurement and control strategies. These blocks may be distributed throughout the array of devices in whatever manner is most efficient. A major advantage of the concept is that devices from many manufacturers may be intermixed in a seamless and integrated manner. Since all devices in a system connect to the same wire pair, the system requires less wire than comparable systems, fewer intrinsic safety barriers and fewer interface cards, resulting in significant cost savings.

MI IDP10-F – May 2010 1. Introduction

The Foxboro FOUNDATION fieldbus system implements the following blocks — Resource Block, Transducer Block, Analog Input (AI) Blocks, and Proportional Integral Derivative (PID) Block. The Resource Block contains all parameters needed to define the device description for the transmitter. The Transducer Block handles all configurable parameters that define the sensor, transmitter hardware, and manufacturer-specific data. The AI Blocks contain all configurable parameters needed to define the input data for use with the other function blocks. The PID Block contains parameters required for PID control.

Reference Documents

Table 1. Reference Documents

Document	Description	
Dimensional Prints		
DP 020-342	Dimensional Print – PSFLT Pressure Seals	
DP 020-343	Dimensional Print – PSFPS and PSFES Pressure Seals	
DP 020-345	Dimensional Print – PSFAR Pressure Seals	
DP 020-347	Dimensional Print – PSTAR Pressure Seals	
DP 020-349	Dimensional Print – PSISR Pressure Seals	
DP 020-351	Dimensional Print – PSSCR Pressure Seals	
DP 020-353	Dimensional Print – PSSCT Pressure Seals	
DP 020-354	Dimensional Print – PSSSR Pressure Seals	
DP 020-355	Dimensional Print – PSSST Pressure Seals	
DP 020-446	Dimensional Print – IDP10, IDP25, and IDP50 Differential Pressure Transmitters	
DP 022-335	Dimensional Print – Model CO Compact Orifice	
Parts Lists		
PL 006-172	Parts List – Model CO Compact Orifice	
PL 009-005	Parts List – IDP10 Differential Pressure Transmitter	
Instructions		
MI 014-900	Instruction –Fieldbus Overview	
MI 020-328	Instruction – Bubble Type Installation for Liquid Level	
MI 020-329	Instruction – High Accuracy Flow Measurement	
MI 020-360	Instruction, Wiring Guidelines for Foxboro FOUNDATION fieldbus Transmitters	
MI 020-369	Instruction – Pressure Seals	
MI 020-427	Instruction – Intrinsic Safety Connection Diagrams and Nonincendive Circuits	
MI 022-138	Instruction – Bypass Manifolds - Installation and Maintenance	
MI 022-335	Instruction – Model CO Compact Orifice	

Document	ment Description	
Technical Information		
TI 1-50a	Technical Information – Liquid Density Measurement	
TI 001-051	Technical Information – Liquid Interface Measurement	
TI 001-052	Technical Information – Liquid Level Measurement	
TI 37-75b	Technical Information – Transmitter Material Selection Guide	
TI 037-097	Technical Information – Process Sealing of I/A Series Pressure Transmitters for use	
	in Class 1, Zone 0, 1, and 2 Hazardous Locations	

Table 1. Reference Documents (Continued)

Transmitter Identification

See Figure 1 for transmitter data plate contents. For a complete explanation of the Model Number code, see the parts list. The sensor board firmware version is identified on the top line of the display when **VIEW DB** (View Database) is selected in the top level structure. See Figure 2.

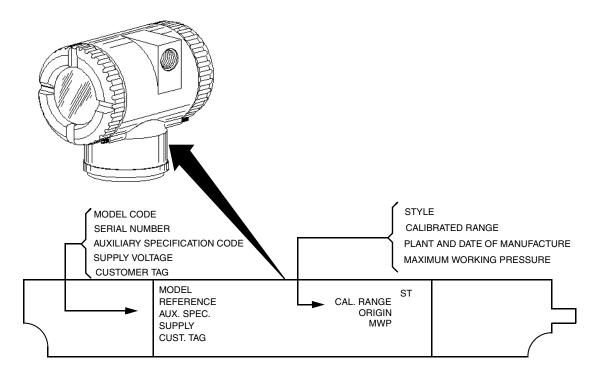


Figure 1. Transmitter Identification

MI IDP10-F – May 2010 1. Introduction

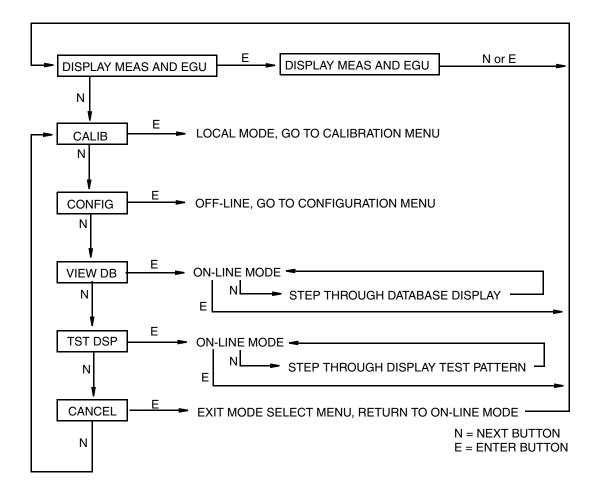
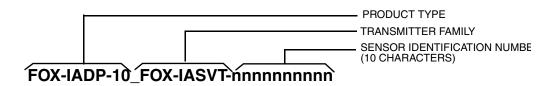
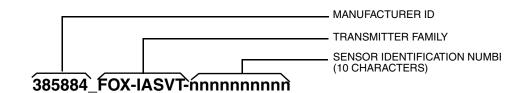




Figure 2. Top Level Structure Diagram

The initial PDTag of the device is:

The Device ID is:

Standard Specifications

Operative Limits

Influence	Operative Limits
Sensor Body Temperature ^(a)	
Silicone Fill Fluid	-46 and +121°C (-50 and +250°F)
Fluorinert Fill Fluid	-29 and +121°C (-20 and +250°F)
pvdf Inserts	-7 and +82°C (20 and 180°F)
Electronics Temperature	-40 and +85°C (-40 and +185°F)
With LCD Display	-40 and +85°C (-40 and +185°F) ^(b)
Relative Humidity	0 and 100%
Supply Voltage	9 to 32 V dc
Mounting Position	No Limit
Pollution Degree	2
Installation Category	II
(Overvoltage Category)	
Vibration	6.3 mm (0.25 in) double amplitude from 5 to 15 Hz with
	aluminum housing and from 5 to 9 Hz with 316 ss housing.
	0 to 30 m/s (0 to 3 "g") from 15 to 500 Hz with aluminum housing
	and
	0 to 10 m/s (0 to 1 "g") from 9 to 500 Hz with 316 ss housing.

⁽a) Refer to MI 020-369 for temperature limits with pressure seals.

Span and Range Limits

Span Limit Code	Span Limits ΔP	Range Limits $\Delta P^{(a)}$
A ^(b)	0.12 and 7.5 kPa 0.5 and 30 inH ₂ 0 12 and 750 mmH ₂ 0	-7.5 and +7.5 kPa -30 and +30 inH ₂ 0 -750 and +750 mmH ₂ 0
В	0.87 and 50 kPa 3.5 and 200 inH ₂ 0 87 and 5000 mmH ₂ 0	-50 and +50 kPa -200 and +200 inH ₂ 0 -5000 and +5000 mmH ₂ 0
С	7.0 and 210 kPa 28 and 840 inH ₂ 0 2.3 and 69 ftH ₂ 0	-210 and +210 kPa -840 and +840 inH ₂ 0 -69 and +69 ftH ₂ 0
D	0.07 and 2.1 MPa 10 and 300 psi 23 and 690 ftH ₂ 0	-0.21 and +2.1 MPa -30 and +300 psi -69 and +690 ftH ₂ 0
Е	0.7 and 21 MPa 100 and 3000 psi	-0.21 and +21 MPa -30 and +3000 psi

⁽a) Negative values of differential pressure indicate a higher pressure on the **low side** of the sensor. Positive values indicate a higher pressure on the **high side** of the sensor.

⁽b)Display updates are slowed and readability decreased at temperatures below -20 $^{\circ}$ C (-4 $^{\circ}$ F).

⁽b)Span Limit Code "A" not available with pressure seals.

MI IDP10-F - May 2010 1. Introduction

Maximum Static, Overrange, and Proof Pressure

Transmitter Configuration	Maximum Static and Overrange Pressure Rating ^(a,e,f)		Proof Pressure Rating ^(b)	
(Bolting Material) ^(c)	MPa	Psi	MPa	Psi
Standard (B7 steel), Option "-B2" (17-4 PH ss), Option "-D3" or "-D7"	25	3625	100	14500
Option "B1" (316 ss) or Option "-D5"	15	2175	60	8700
Option "B3" (B7M)	20	2900	70	11150
Option "-D1"	16	2320	64	9280
Option "-D2", "-D4", "-D6", or "-D8"(d)	10	1500	40	6000
Option "-D9" (17-4 PH ss)	40	5800	100	14500

- (a) Either side can be at higher pressure during overrange.
- (b) Meets ANSI/ISA Standard S82.03-1988.
- (c)-D1 = DIN Single ended process cover with M10 B7 bolting.
 - -D2 = DIN Double ended process cover with M10 B7 bolting
 - -D3 = DIN Single ended process cover with 7/16 in B7 bolting.

 - -D4 = DIN Double ended process cover with 7/16 in B7 bolting. -D5 = DIN Single ended process cover with 7/16 in 316 ss bolting. -D6 = DIN Double ended process cover with 7/16 in 316 ss bolting. -D7 = DIN Single ended process cover with 7/16 in 17-4 ss bolting.
 - -D8 = DIN Double ended process cover with 7/16 in 17-4 ss bolting
 - -D9 = DIN Single ended process cover with 7/16 in 17-4 ss bolting.
- (d)Limited to operating temperatures ranging from 0 to 60 °C (32 to 140 °F).
- (e) When Structure Codes 78/79 are used (pvdf inserts in the Hi and Lo side process covers), the maximum overrange is 2.1 MPa (300 psi) and temperature limits are -7 and +82°C (20 and 180°F).
- (f) Static pressure rating of 40 MPa (5800 psi) with Option Code -Y.

— NOTE -

Static pressure zero shift for all calibrated spans can be eliminated by readjusting the zero output at nominal operating static pressure.

-! CAUTION

- 1. Exceeding the maximum overrange pressure can cause damage to the transmitter degrading its performance.
- 2. The transmitter could be nonfunctional after application of the proof pressure.

Elevated Zero and Suppressed Zero

For applications requiring an elevated or suppressed zero, the maximum span and the upper and lower range limits of the transmitter can not be exceeded.

Sensor Fill Fluid

Silicone Oil (DC 200) or Fluorinert (FC-43)

Minimum Allowable Absolute Pressure vs. Process Temperature

With Silicone Fill Fluid: At full vacuum: Up to 121°C (250°F)

With Fluorinert Fill Fluid: Refer to Figure 3.

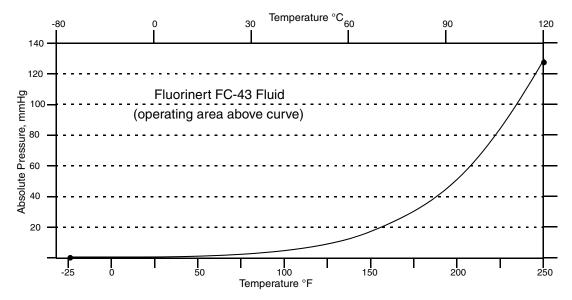


Figure 3. Minimum Allowable Absolute Pressure vs. Process Temperature with Fluorinert Fill Fluid

Mounting Position

The transmitter can be mounted in any orientation. It can be supported by the process piping. It can also be mounted directly to a vertical or horizontal pipe or surface mounted using an optional mounting bracket. The housing can be rotated up to one full turn to any desired position for access to adjustments, display, or conduit connections. See "Positioning the Housing" on page 26. The display (if present) can also be rotated in the housing to any of four different positions at 90° increments. See "Positioning the Display" on page 26.

— NOTE

Position effect zero shift for all calibrated spans can be eliminated by readjusting zero output after installation.

Approximate Mass

Without Process Connectors

With Process Connectors

With Optional 316 ss Housing

With Pressure Seals

3.5 kg (7.8 lb)

4.2 kg (9.2 lb)

Add 1.1 kg (2.4 lb)

Varies with seal used

Process Connections

IDP10 transmitters are connected to the process via a 1/4 NPT thread or any one of a number of optional process connectors.

MI IDP10-F – May 2010 1. *Introduction*

Process Wetted Materials

Diaphragm: 316L ss, Co-Ni-Cr, Hastelloy C, Monel, gold plated 316L ss, or tantalum Covers and Process Connections: 316 ss, carbon steel, Hastelloy C, Monel, or pvdf inserts

Pressure Seals: Refer to MI 020-369

Process Pressure and Temperature Limits for Pressure Seals

Refer to MI 020-369

Electrical Connections

Field wires enter through 1/2 NPT, PG 13.5 or M20 threaded entrances on either side of the electronics housing. Leads terminate under screw terminals and washers on the terminal block in the field terminal compartment. To maintain RFI/EMI, environmental, and explosion proof ratings, unused conduit connection must be plugged with metal plug (provided), inserted to five full turns for 1/2 NPT connections; seven full turns for M20 and PG 13.5 connections.

Adjustable Damping

The transmitter response time is normally 1.0 second or the electronically adjustable setting of 0.00 (none), 0.25, 0.50, 1, 2, 4, 8, 16, or 32 seconds, whichever is greater, for a 90% recovery from an 80% input step as defined in ANSI/ISA S51.1.

Output Signal

FOUNDATION fieldbus linear or square root digital; software selectable and remotely configurable from a FOUNDATION fieldbus host such as a PC or I/A Series console equipped with a FOUNDATION fieldbus Interface Module. The output is also locally configurable with the pushbuttons on the display.

Zero and Span Adjustments

The zero and span is adjustable from the FOUNDATION fieldbus host computer or I/A Series console equipped with FOUNDATION fieldbus Interface Module. They are also adjustable at the transmitter using the display. An optional self-contained moisture sealed pushbutton assembly allows local resetting of the zero without removing the housing cover.

Shielding (Screening)

For best performance, fieldbus cables should be shielded. Use common multi-conductor (multi-core) "instrument" cable with one or more twisted pairs, an overall, metallized shield, and a shield wire. You can also use cable that has individually shielded pairs. For new installations, ask cable vendors for "fieldbus cable."

Connect the shield on each spur to the trunk shield and connect the overall shield to ground at one point only. For most networks, the grounding point can be located anywhere.

In some instances, better high-frequency EMI shielding requires that the shield be connected to ground at multiple points. (See Mardiguian, M., and White, D.R.J., EMI

Control Methodology and Procedures.) Fieldbus provides for this by allowing an rf ground at multiple points, consisting of a small capacitor from shield to ground.

Supply Voltage

Power supply (a FOUNDATION fieldbus Power Supply Module) must be capable of providing at least 14 mA for each transmitter connected.

A summary of the voltage requirements is listed in Table 2.

Table 2. Minimum Supply Voltage Requirements

Minimum Supply Voltage	9 V
Recommended Supply Voltage	24 V
Maximum Supply Voltage	32 V

Electrical Ground Connections

The transmitter is equipped with an internal ground connection within the field wiring compartment and an external ground connection at the base of the electronics housing. To minimize galvanic corrosion, place the wire lead or terminal between the captive washer and loose washer on the external ground screw. Earth (ground) the shield at one place per segment **only**. Refer to MI 020-360 for wiring guidelines.

Remote Communications

Using the FOUNDATION fieldbus protocol, the transmitter communicates bidirectionally over the 2-wire field wiring to other FOUNDATION fieldbus devices (located anywhere in a Division 2 or nonhazardous area), or a FOUNDATION fieldbus host (anywhere in a nonhazardous area) and/or to an I/A Series system equipped with a FOUNDATION fieldbus Interface Module.

Communications Format

Communication is based upon the FOUNDATION fieldbus communication protocol. The signals are superimposed on the transmitter power/signal leads.

Digital Output

The transmitter can be configured to send its differential pressure measurement to the I/A Series system as a digital signal. Remote communications occur between the transmitter and other FOUNDATION fieldbus devices and hosts. The data transmission rate is 31.25 kbits/second. The maximum communication distance is 1900 m (6235 ft). This distance includes spur length. Maximum spur length is 120 m (395 ft). Minimum spur length is 1 m (3.3 ft). For intrinsically safe installations, maximum spur length is 30 m (98 ft).

1. Introduction MI IDP10-F - May 2010

Product Safety Specifications

DANGER

To prevent possible explosions and to maintain flameproof, explosion proof, and dustignitionproof protection, observe applicable wiring practices. Plug unused conduit opening with the provided metal pipe plug. Both plug and conduit must engage a minimum of five full threads for 1/2 NPT connections; seven full threads for M20 and PG 13.5 connections.

─ ■ WARNING

To maintain IEC IP66 and NEMA Type 4X protection, the unused conduit opening must be plugged with the metal plug provided. Use a suitable thread sealant on both conduit connections. In addition, the threaded housing covers must be installed. Turn covers to seat the O-ring into the housing and then continue to hand tighten until the cover contacts the housing metal-to-metal.

— NOTE

II 1 G EEx ia IIC, Zone 0.

II 3 G EEx nL IIC, Zone 2.

ATEX FNICO field device protection n

- 1. These transmitters have been designed to meet the electrical safety description listed in Table 3. For detailed information or status of testing laboratory approvals/certifications, contact Invensys.
- 2. Wiring restrictions required to maintain electrical certification of the transmitter are provided in "Wiring" on page 27.

Agency Certification, Types of Protection, and Area Classification	Application Conditions	Electrical Safety Design Code
ATEX flameproof: II 2 GD EEx d IIC, Zone 1.	KEMA 00ATEX2019X Temperature Class T6, T85°C Ta = -40 to +80°C.	D
ATEX FISCO field device intrinsically safe:	SIRA 04ATEX2335X Temperature Class T4, Ta = -40 to	E

+80°C

+80°C.

SIRA 04ATEX4019X

Temperature Class T4, Ta = -40 to

N

Table 3. Electrical Safety Specifications

Table 3. Electrical Safety Specifications (Continued)

Agency Certification, Types of Protection, and Area Classification	Application Conditions	Electrical Safety Design Code
CSA FISCO field device intrinsically safe for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, G; Class III Division 1.	Connect per MI 020-427. Temperature Class T6 at 40°C (104°F), and T4A at 85°C (185°F) maximum ambient.	
Also zone certified intrinsically safe Ex ia IIC, Zone 0 and energy limited Ex nA II, Zone 2.	Temperature Class T4 at 40°C (104°F), and T3 at 85°C (185°F) max.ambient.	
CSA explosionproof for Class I, Division 1, Groups B, C, and D; dust- ignitionproof for Class II, Division 1, Groups E, F, and G; Class III, Division 1.	Maximum Ambient Temperature 85°C (185°F).	С
CSA FNICO field device for Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G; Class III, Division 2.	Temperature Class T6 at 40°C (104°F) and T4A at 85°C (185°F) maximum ambient.	
CSA field device zone certified flameproof Ex d IIC. Also, all certifications of Code C above.	Maximum Ambient Temperature 85°C (185°F).	В
FM FISCO field device intrinsically safe for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, G; Class III Division 1.	Connect per MI 020-427. Temperature Class T4A at 40°C (104°F) and T4 at 85°C (185°F) maximum ambient.	
Also zone certified intrinsically safe AEx ia IIC.	Temperature Class T4 at 85°C (185°F) maximum ambient.	
FM explosionproof for Class I, Division 1, Groups B, C, and D; dust-ignitionproof for Class II, Division 1, Groups E, F, and G; Class III, Division 1.	Temperature Class T6 at 80°C (176°F) and T5 at 85°C (185°F) maximum ambient.	F
FM FNICO field device nonincendive for Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G; Class III, Division 2.	Temperature Class T4A at 40°C (104°F) and T4 at 85°C (185°F) maximum ambient.	
FM field device zone certified flameproof AEx d IIC. Also, all certifications of Code F above.	Temperature Class T6 at 75 °C (167 °F) maximum ambient.	G

MI IDP10-F – May 2010 1. Introduction

Table 3. Electrical Safety Specifications (Continued)

Agency Certification, Types of Protection, and Area Classification	Application Conditions	Electrical Safety Design Code
IECEx FISCO field device intrinsically safe: Ex ia IIC, Zone 0.	IECEx SIR 04.0036X Temperature Class T4, Ta = -40 to +80°C	Т
IECEx FNICO field device protection n: Ex nL IIC, Zone 2.	IECEx SIR 04.0023X Temperature Class T4, Ta = -40 to +80°C	U
IECEx flameproof: Ex d IIC	IECEx FMG 06.0007X, Ex d IIC T6 Ta=80°C, T5 Ta=85°C Ambient Temperature -20 to +85°C	V

ATEX and IECEx Warnings

Do not open while circuits are alive.

ATEX Compliance Documents

EN 50014: 1997 EN 50018: 1994 EN 50020: 2002 EN 50284: 1999

EN 60079-15: 2003

IECEx Compliance Documents

IEC 60079-0 (Edition 4.0): 2004

IEC 60079-0 (Edition 3.1): 2000

IEC 60079-1 (Edition 5): 2003

IEC 60079-11 (Edition 4): 1999

IEC 60070-15 (Edition 2): 2001

2. Installation

-! CAUTION

To avoid damage to the transmitter sensor, do not use any impact devices, such as an impact wrench or stamping device, on the transmitter.

NOTE

- 1. The transmitter should be mounted so that any moisture condensing or draining into the field wiring compartment can exit through one of the two threaded conduit connections.
- 2. Use a suitable thread sealant on all connections.

Transmitter Mounting

The IDP Series differential pressure transmitter can be supported by the process piping or mounted to a vertical or horizontal pipe or surface using the optional mounting bracket. See figures below. For dimensional information, refer to DP 020-446.

- NOTE

- 1. If the transmitter is not installed in the vertical position, readjust the zero output to eliminate the position zero effect.
- 2. When structure codes 78/79 are used (pvdf inserts) with the IDP10 transmitters, the process connection must be made directly to the pvdf inserts in the high and low side process covers.

Process Mounting

With process mounting, the transmitter mounted to and supported by the process piping.

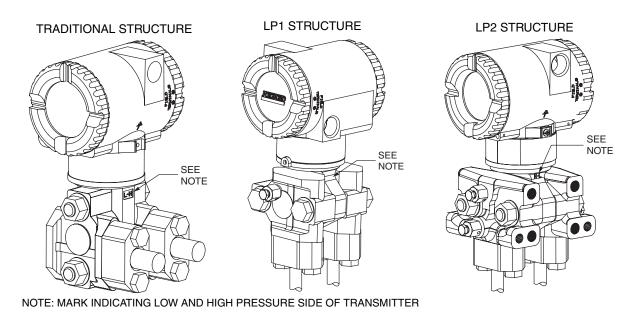


Figure 4. Typical Mounting of an IDP Transmitter Supported by Process Piping

Manifold Mounted Transmitter

With manifold mounting, the transmitter is mounted to and supported by a bypass manifold. The bypass manifold can be mounted to a DN50 or 2 inch pipe with an optional mounting bracket. See MI 022-138.

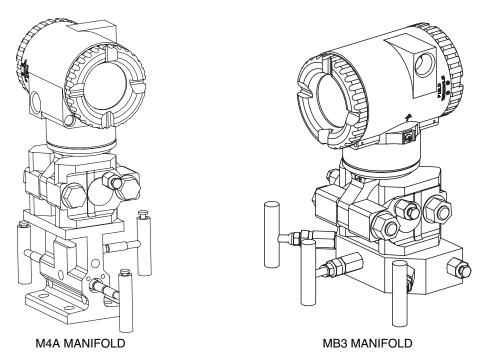


Figure 5. Typical Mounting of an IDP Transmitter Supported by a Bypass Manifold

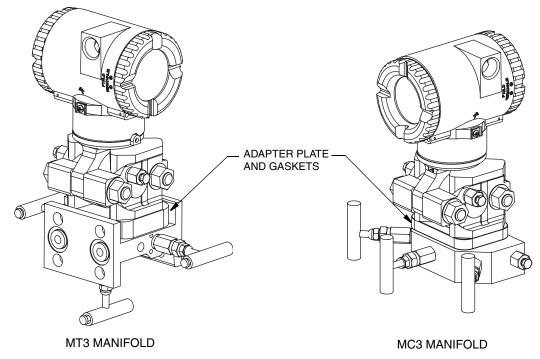


Figure 6. Typical Mounting of IDP Transmitter on Coplanar $^{\text{TM}}$ Manifold

Pipe or Surface Mounting

To mount the transmitter to a pipe or surface, use the Standard Mounting Bracket Set (Model Code Option -M1 or -M2) or Universal Bracket Mounting Set (Model Code Option -M3).

Standard Mounting Bracket

The transmitter (with either traditional or LP2 low-profile structures) can be mounted to a vertical or horizontal, DN 50 or 2-in pipe using a standard bracket. See Figures 7 and 8 for details of a standard bracket and examples of different mounting situations. Secure the mounting bracket to the transmitter using the four screws provided. Mount the bracket to the pipe. To mount to a horizontal pipe, turn the U-bolt 90° from the position shown. The mounting bracket can also be used for wall mounting by securing the bracket to a wall using the U-bolt mounting holes.

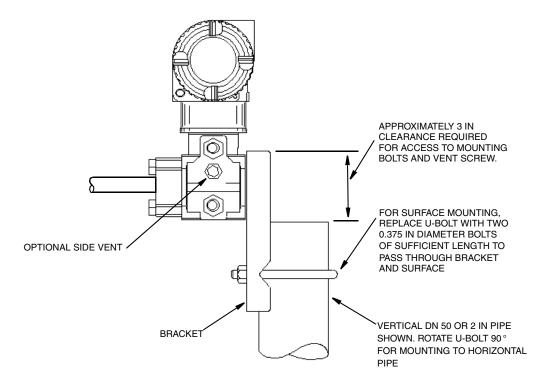


Figure 7. Pipe or Surface Mounted Transmitter Using a Standard Bracket

2. Installation MI IDP10-F – May 2010

Figure 8. Examples of Mounting With a Standard Bracket

Universal Mounting Bracket

The transmitter (with either traditional or LP2 low-profile structure) can be mounted in a myriad of positions to a vertical or horizontal, DN 50 or 2-in pipe using a universal bracket. See the following figures for details of a universal bracket and examples of different mounting situations. Secure the mounting bracket to the transmitter using the two long or four short screws provided. Mount the bracket to the pipe. The mounting bracket can also be used for wall mounting by securing the bracket to a wall using the U-bolt mounting holes.

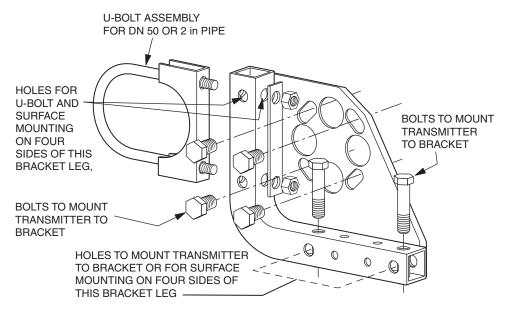


Figure 9. Details of a Universal Bracket

2. Installation MI IDP10-F – May 2010

Figure 10. Mounting a Transmitter with Traditional Structure Using a Universal Bracket

Figure 11. Vertical Pipe Mounting a Transmitter with LP2 Structure Using a Universal Bracket

Figure 12. Horizontal Mounting a Transmitter with LP2 Structure Using a Universal Bracket

Venting and Draining

Traditional Structure

Sensor cavity venting and draining is provided for both vertical and horizontal mounting. For vertical mounted units, draining is via a drain screw and venting is possible with side vents (Option Code -V). For horizontal mounted units, the unit is self draining and venting is via a vent screw.

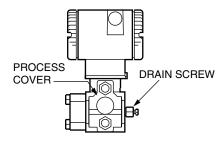


Figure 13. Vertical Mounting - Cavity Draining

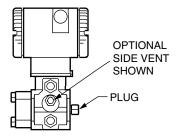


Figure 14. Vertical Mounting - Cavity Venting

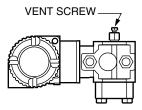


Figure 15. Horizontal Mounting - Cavity Venting

LP1 Low Profile Structure

Sensor cavity venting and draining is provided for both vertical and horizontal mounting. For vertical mounted units, the transmitter is self draining and venting is via a vent screw. For horizontal mounted units, the transmitter can simply be 'turned over' (rotated 180 degrees) to orient the high and low pressure sides in the preferred locations. There is no need to unbolt the

process covers. If the transmitter is connected with a length of impulse piping, such piping should slope up to the transmitter for gas applications and down for liquid applications.

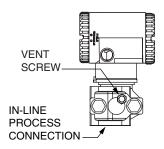


Figure 16. Vertical Mounting - Cavity Venting

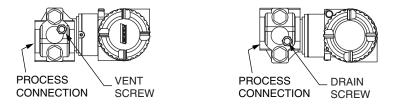


Figure 17. Horizontal Mounting - Cavity Venting and Draining

LP2 Low Profile Structure

The transmitter with LP2 low profile structure had a full-featured vent and drain design with separate vent and drain screws positioned in each cover for complete venting and draining from the sensor cavity.

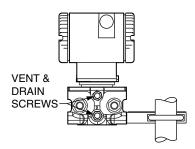


Figure 18. Cavity Venting and Draining

Installation of Flow Measurement Piping

Figures 19 and 20 show typical installations with horizontal and vertical process pipes.

The transmitters are shown below the level of the pressure connections at the pipe (usual arrangement, except for gas flow without a seal liquid), and with filling tees in the lines to the transmitter (for a seal liquid).

If the process fluid being measured must not come in contact with the transmitter, the transmitter lines must be filled with a suitable seal liquid (see procedure in next section). In such a case, the transmitter must be mounted below the level of the pressure connections at the pipe. With steam flow, the lines are filled with water to protect the transmitter from the hot steam. The seal liquid (or water) is added to the lines through the filling tees. To prevent unequal heads on the transmitter, the tees must be at the same elevation and the transmitter must be mounted vertically (as shown). If a seal liquid is not required, elbows can be used in place of the tees.

Tighten drain plugs and optional vent screws to 20 N·m (15 lb·ft). Tighten the four process connector bolts to a torque of 61 N·m (45 lb·ft).

Note that the low and high pressure sides of the transmitter are identified by an L-H marking on the side of the sensor above the warning label.

With medium viscosity seal liquids and/or long transmitter lines, larger valve sizes should be used.

— NOTE

- 1. With a **horizontal** line, pressure connections at the pipe should be at the side of the line. However, with gas flow without a seal liquid, connections should be at top of line.
- 2. With a **vertical** line, flow should be upwards.
- 3. For **liquid** or **steam** flow, the transmitter should be mounted **lower** than the pressure connections at the pipe.
- 4. For **gas** flow **without** a seal liquid, the transmitter should be mounted **above** the pressure connections at the pipe; for **gas** flow **with** a seal liquid, the transmitter should be mounted **below** the pressure connections.
- 5. Invensys recommends the use of snubbers in installations prone to high levels of fluid pulsations.

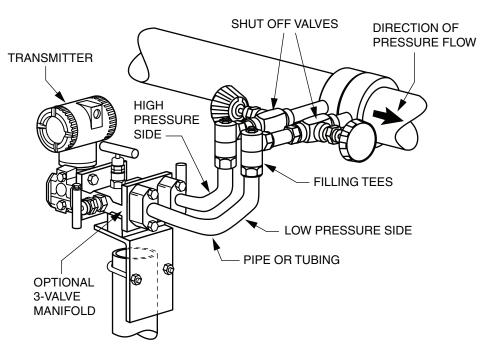


Figure 19. Example of Horizontal Process Line Installation

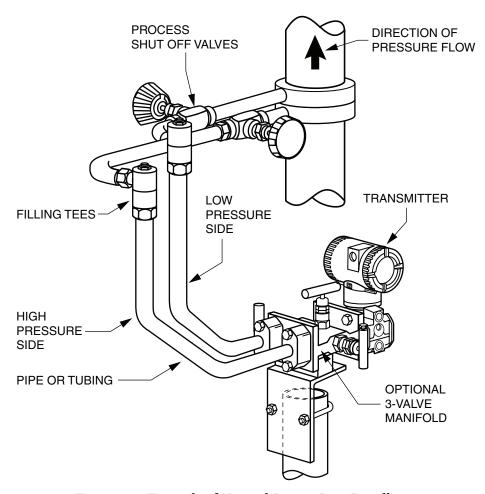


Figure 20. Example of Vertical Process Line Installation

Filling System with Seal Liquid

If the process fluid being measured must not come in contact with the transmitter, the transmitter lines must be filled with a suitable seal liquid. The procedure to do this is as follows:

- 1. If the transmitter is in service, follow the procedure for "Taking a Differential Pressure Transmitter Out of Operation" on page 33.
- 2. Close both process shutoff valves.
- **3.** Open all three valves on the 3-valve manifold.
- 4. Partially open the vent screws on the transmitter until all air has been forced out of the transmitter body and lines. Close the vent screws.
- 5. Refill the tee connections. Replace the plugs and close the bypass valve. Check for leaks.
- **6.** Follow the procedure for "Putting a Differential Pressure Transmitter Into Operation" on page 32.

To prevent loss of seal liquid and contamination of process fluid, never open both process shutoff valves and manifold shutoff valves if the bypass valve is open.

Positioning the Housing

The transmitter housing (topworks) can be rotated up to one full turn in the counterclockwise direction when viewed from above for optimum access to adjustments, display, or conduit connections. Housings have either an anti-rotation screw or a retention clip that prevent the housing from being rotated beyond a safe depth of housing/sensor thread engagement.

-

WARNING

If the electronics housing is removed for maintenance, it must be hand tightened to the bottom of the threads, but not over-tightened upon reassembly. See "Removing and Reinstalling a Housing Assembly" on page 70.

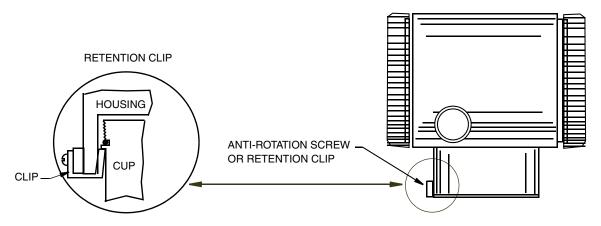


Figure 21. Housing Screw or Clip Location

Positioning the Display

The display (optional in some models) can be rotated within the housing to any of four positions at 90° increments. To do this, grasp the two tabs on the display and rotate it about 10° in a counterclockwise direction. Pull out the display. Ensure that the O-ring is fully seated in its groove in the display housing. Turn the display to the desired position, reinsert it in the electronics module, aligning the tabs on the sides of the assembly, and twist it in the clockwise direction.

CAUTION

Do **not** turn the display more than 180° in any direction. Doing so could damage its connecting cable.

Setting the Write Protect Jumper

Your transmitter has write protection capability. This means that the external zero, local display, and remote communications can be prevented from making changes to the static or nonvolatile data base in the function block application of the resource. Write protection can be set by moving a jumper that is located in the electronics compartment behind the optional display. To activate write protection, remove the display as described in the previous section, then remove the jumper or move it to the lower position. See Figure 22. Replace the display. When configuring the transmitter, select the **Hard W Lock** option in the **FEATURE_SEL** parameter in the Resource Block. For more information on write protection in fieldbus devices, see MI 014-900.

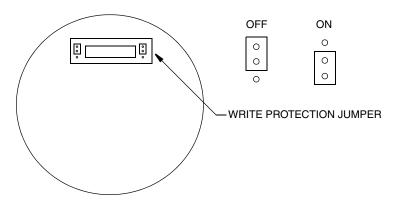


Figure 22. Write Protection Jumper

Cover Locks

Electronic housing cover locks, shown in Figure 23, are provided as standard with certain agency certifications and as part of the Custody Transfer Lock and Seal option. To lock the covers, unscrew the locking pin until approximately 6 mm (0.25 in) shows, lining up the hole in the pin with the hole in the housing. Insert the seal wire through the two holes, slide the seal onto the wire ends and crimp the seal.

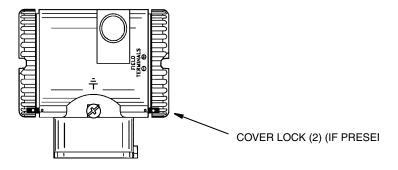


Figure 23. Cover Lock Location

Wiring

The installation and wiring of your transmitter must conform to local code requirements.

WARNING

ATEX requires that when the equipment is intended to be used in an explosive atmosphere caused by the presence of combustible dust, cable entry devices and blanking elements shall provide a degree of ingress protection of at least IP6X. They shall be suitable for the conditions of use and correctly installed.

- NOTE

Invensys recommends the use of transient/surge protection in installations prone to high levels of electrical transients and surges.

Accessing Transmitter Field Terminals

For access to the field terminals, thread the cover lock (if present) into the housing to clear the threaded cover and remove the cover from the field terminals compartment as shown in Figure 24. Note that the embossed letters **FIELD TERMINALS** identify the proper compartment.

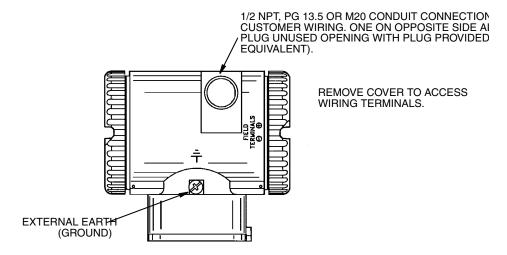


Figure 24. Accessing Field Terminals

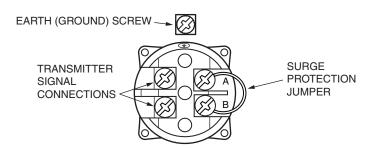


Figure 25. Identification of Field Terminals

Wiring Notes

Do not run transmitter wires in the same conduit as mains (ac power) wires.

Use FOUNDATION fieldbus approved cable (multi-core, shielded, twisted-pair cable) to protect remote communications from electrical noise. Refer to MI 020-360 or FOUNDATION fieldbus Application Guide AG-140, Rev 1.0 or later.

The transmitter is polarity independent and therefore cannot be wired incorrectly.

Power supply (a FOUNDATION fieldbus Power Supply Module) must be capable of providing at least 14 mA for each transmitter connected.

A summary of the voltage requirements is listed in Table 4:

Table 4. Minimum Supply Voltage Requirements

Minimum Supply Voltage	9 V
Recommended Supply Voltage	24 V
Maximum Supply Voltage	32 V

Review suggested wiring practices as described in MI 020-360 to ensure proper communications capability and to minimize the effects of RFI.

Refer to Figure 26 for a wiring diagram of a typical transmitter installation.

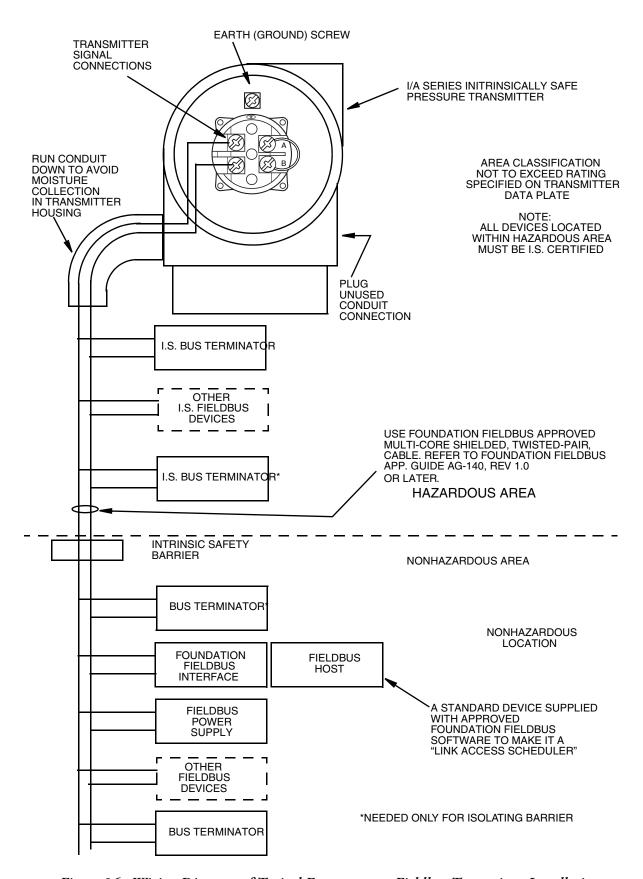


Figure 26. Wiring Diagram of Typical FOUNDATION Fieldbus Transmitter Installation

Wiring the Transmitter

Transmitters with a digital output signal connect to a FOUNDATION fieldbus host or an I/A Series system through the fieldbus. Maximum recommended length for field wire is 1800 m (6000 ft). Transmitter power is supplied by a FOUNDATION fieldbus Power Supply Module. This procedure identifies wire terminations in the transmitter. For other system wiring details, refer to the installation instructions provided with the I/A Series system.

Use the following procedure to wire the transmitter:

- 1. Remove the cover from the transmitter field terminal compartment.
- 2. Run signal wires (0.50 mm² or 18 AWG, typical) through one of the transmitter conduit connections. Use shielded twisted-pair cable to protect the digital output and/or remote communications from electrical noise.

Do not run transmitter wires in same conduit as mains (ac power) wires.

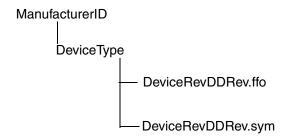
- 3. Plug the unused conduit connection with the 1/2 NPT, PG 13.5 or M20 metal plug provided (or equivalent). To maintain specified explosion proof and dustignitionproof protection, the plug must engage a minimum of five full threads for 1/2 NPT connections; seven full threads for M20 and PG 13.5 connections.
- 4. Connect an earth (ground) wire to the earth terminal in accordance with local practice.

- ! CAUTION -

To avoid errors resulting from earth loops or the possibility of short-circuiting groups of instruments in a loop, use only one earth in a loop.

- 5. Connect the FOUNDATION fieldbus bus to the two terminals on the terminal block in the field terminal compartment.
- 6. Reinstall the cover onto the housing by rotating it clockwise to seat the O-ring into the housing and then continue to hand tighten until the cover contacts the housing metal-to-metal. If cover locks are present, lock the cover per the procedure described in "Cover Locks" on page 27.

Installing the Fieldbus Software


Descriptor files used by a FOUNDATION fieldbus configurator (host) can be found on the Invensys or FOUNDATION fieldbus website. The files included are:

MI IDP10-F – May 2010 2. Installation

Filename	Description
readme.doc	A WORD file with DD installation instructions
reademe.txt	A text file with DD installation instructions (for users without MS-WORD).
xxyy.ffo	DD binary file
where	xx = Device Rev. (Parameter 12 in Resource Block) yy = DD Rev. (Parameter 13 in Resource Block)
xxyy.sym	DD symbol file
xxbbzz.cff ^(a)	Capability File (zz=cff rev)

⁽a) 'bb' may be the same as 'yy' or may be 'ff'.

Set up the following directory structure for the DD files of a device on the host computer. According to the FOUNDATION specification, the device description files must be present in the appropriate directories as described below.

where *.ffo is the DD binary file and *.sym is the symbol file.

The Manufacturer ID for Foxboro is 385884 and the Device Type for this pressure transmitter is BA30.

- NOTE -

- 1. The applicable DD and capability files are also available at www.fieldbus.org.
- 2. Foxboro parameter values are depicted in this document in the hex format.

Putting a Differential Pressure Transmitter Into Operation

The following procedure explains how to sequence the valves in your flow measurement piping or optional bypass manifold to ensure that your transmitter is not overranged and that seal liquid is not lost. Refer to Figures 19 and 20.

- NOTE

This procedure assumes that the process shutoff valves are open.

- 1. Make sure that both upstream and downstream manifold valves are closed.
- 2. Make sure that the bypass valve is open.

- 3. Slowly open the upstream manifold valve.
- 4. Close the bypass valve.
- 5. Slowly open the downstream manifold valve.

Taking a Differential Pressure Transmitter Out of Operation

The following procedure explains how to sequence the valves in your flow measurement piping or optional bypass manifold to ensure that your transmitter is not overranged and that seal liquid is not lost. Refer to Figures 19 and 20.

— NOTE -

This procedure assumes that the process shutoff valves are open.

- 1. Close the downstream manifold valve.
- 2. Close the upstream manifold valve.
- 3. Open the bypass valve.
- 4. Carefully open the vent screw to release any residual pressure before disconnecting

— WARNING -

When venting pressure from the transmitter, wear suitable protective equipment to prevent possible injury from process material, temperature, or pressure.

MI IDP10-F – May 2010 2. Installation

3. Operation Via Local Display

A local display, as shown in Figure 27, has two lines of information. The upper line is a 5-digit numeric display (4-digit when a minus sign is needed); the lower line is a 7-digit alphanumeric display. The display provides local indication of measurement information. The primary (M1) measurement is normally displayed. To view the secondary (M2) measurement, press the **Enter** button while in normal operating mode. Press the **Next** or **Enter** button to return to the primary measurement. If left in M2 display, an M2 message blinks in the lower right of the display. If power to the transmitter is interrupted, the display reverts to the M1 display.

The display also provides a means for performing calibration and configuration, viewing the database, and testing the display via the 2-button keypad. You can access these operations by means of a multi-level menu system. Entry to the Mode Select menu is made (from normal operating mode) by pressing the **Next** button. You can exit this menu, restore your prior calibration or configuration, and return to the normal operating mode at any time by going to **Cancel** and pressing the **Enter** button.

The following items can be selected from this menu: Calibration (**CALIB**). Configuration (**CONFIG**), Viewing the database (**VIEW DB**), and Testing the display (**TST DSP**). The top level structure diagram is shown in Figure 28.

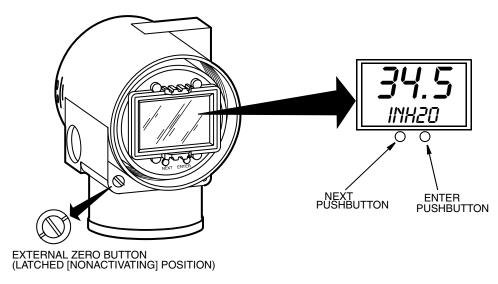


Figure 27. Local Display Module

Figure 28. Top Level Structure Diagram

Entering Numerical Values

The general procedure for entering numerical values in Calibration and Configuration is as follows:

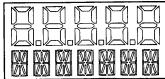
- 1. At the appropriate prompt, press the **Enter** button. The display shows the last (or default) value with the first digit flashing.
- 2. Use the **Next** button to select the desired first digit, then press the **Enter** button. Your selection is entered and the second digit flashes.
- 3. Repeat Step 2 until you have created your new value. If the number has less than five characters, use leading or trailing zeros for the remaining spaces. When you have configured the fifth space, the display prompts you to place the decimal point.
- 4. Move the decimal point with the **Next** button until it is where you want it and press the **Enter** button.

- NOTE

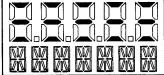
- 1. The decimal point may not be placed directly after the first digit. For example, you can not enter a value as 1.2300; you must enter it as 01.230.
- 2. The decimal position is identified by flashing except at the position after the fifth digit. At that position (representing a whole number), the decimal point is assumed.
- 5. The display advances to the next menu item.

Viewing the Database

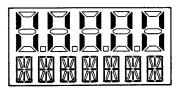
You can access the View Database mode by the multi-level menu system described above. Entry to the Mode Select menu is made (from normal operating mode) by pressing the **Next** button. The display reads **CALIB**, the first item on the menu. Press the **Next** button twice to get to the third item on the menu, **VIEW DB**. Acknowledge your choice of this selection by pressing the **Enter** button. The display shows the first item in the database. You can step through the database display by repeated use of the **Next** button. You can abort this procedure at any time by pressing the **Enter** button.


Viewing the Pressure Range

The values of M1LRV and M1 URV can be viewed in VIEW DB as described above. They can also be viewed in the RERANGE function in Calibration mode and Configuration mode.


Testing the Display

You can access the Test Display mode by the same multi-level menu system that was used to enter Calibration, Configuration, and View Database mode. Entry to the Mode Select menu is made (from normal operating mode) by pressing the **Next** button. The display reads **CALIB**, the first item on the menu. Press the **Next** button three times to get to the fourth item on the menu, **TST DSP**. Acknowledge your choice of this selection by pressing the **Enter** button. The display shows the first test segment pattern. You can step through the five patterns by repeated use of the **Next** button. You can abort the test at any time by pressing the **Enter** button. The five patterns are shown in Figure 29.


ALL SEGMENTS ON ALL SEGMENTS OFF

ALL VERTICAL SEGMENTS ON

ALL DIAGONAL SEGMENTS AND DECIMAL POINTS ON

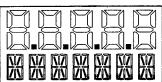


Figure 29. Display Test Segment Patterns

4. Calibration

— NOTE

- 1. For best results in applications where high accuracy is required, rezero the transmitter output once it has stabilized at the final operating temperature.
- 2. Zero shifts resulting from position effects and/or static pressure effects can be eliminated by rezeroing the transmitter output.

Calibration Setup

The following sections show setups for field or bench calibration. Use test equipment that is at least three times as accurate as the desired accuracy of the transmitter.

— NOTE

It is not necessary to set up calibration equipment to rerange the transmitter to a different range. The transmitter can be accurately reranged by simply changing the lower range value and the upper range value, which are stored in the transmitter database.

Field Calibration Setup

Field calibration is performed without disconnecting the process piping. In order to do this, you must have a bypass and shutoff valves between the process and the transmitter and one of the following:

- Access to the process connections on the nonprocess side of the transmitter
- The optional vent screw in the side of the process covers.

If the transmitter is to be removed from the process for calibration, refer to "Bench Calibration Setup" below.

For field calibration, an adjustable air supply and a pressure measuring device are required. For example, a dead weight tester or an adjustable clean air supply and pressure gauge can be used. The pressure source can be connected to the transmitter process connection with pipe fittings or it can be connected to the vent screw assembly using a calibration screw. The calibration screw has a Polyflo fitting and can be used for pressures up to 700 kPa (100 psi). It is available from Invensys Foxboro as Part Number F0101ES.

To set up the equipment, refer to Figure 30 and use the following procedure.

1. If the transmitter is in operation, follow the "Taking a Differential Pressure Transmitter Out of Operation" procedure on page 33.

With liquid service, drain both sides of transmitter to avoid calibration errors.

2. If a calibration screw is being used, remove the vent screw and replace it with the calibration screw. Connect the pressure source to the calibration screw using

MI IDP10-F – May 2010 4. Calibration

6 x 1 mm or 0.250 inch tubing.

If a calibration screw is **not** being used, remove the entire vent screw assembly or drain plug (as applicable) from the high pressure side of the transmitter. Connect calibration tubing using a suitable thread sealant.

- **3.** Close the bypass valve opened in Step 1.
- 4. Complete the setup shown in Figure 30.

NOTE

For vacuum applications, connect the calibrating pressure source to the low pressure side of the transmitter.

5. If calibrating the output signal, also connect equipment as shown in "Setup of Electronic Equipment."

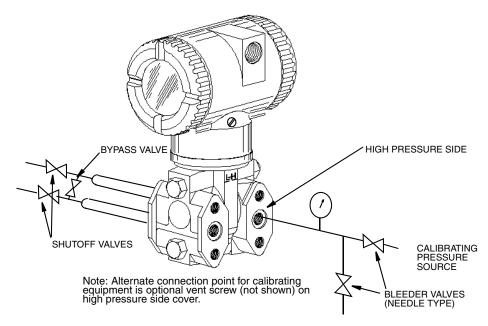


Figure 30. Field Calibration Setup

Bench Calibration Setup

The bench calibration setup requires disconnecting the process piping. For calibration setup without disconnecting the process piping, refer to "Field Calibration Setup" above.

The setup is shown in Figure 31. Connect the input piping to the high pressure side of the transmitter as shown. Vent the low pressure side of the transmitter.

— NOTE

For vacuum applications, connect the calibrating pressure source to the low pressure side of the transmitter.

If calibrating the output signal, also connect equipment as shown in "Setup of Electronic Equipment."

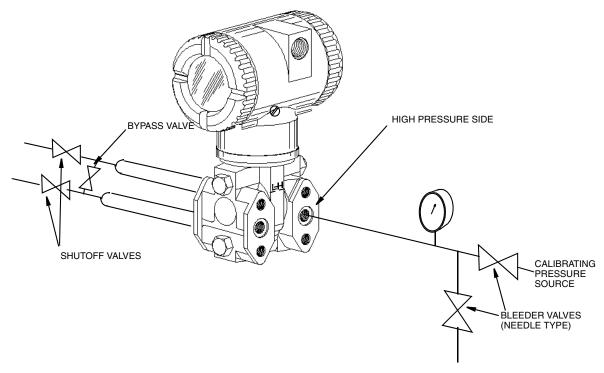


Figure 31. Bench Calibration Setup

Calibration Using the Optional Local Display

From the display, you can:

- Zero the transmitter at zero differential pressure
- Calibrate the lower range value (LRV or 0% range value)
- Calibrate the upper range value (URV or 100% range value)
- Rerange your transmitter by adjusting the 0% and 100% range values.

— NOTE

- 1. 4 to 20 mA calibration is not available with FOUNDATION fieldbus transmitters.
- 2. If calibration has been configured as password protected, you are asked to enter the password before you can proceed.
- 3. If your transmitter is write protected, you cannot write your calibration to the electronics without disabling this feature.

To access the Calibration mode (from normal operating mode), press the **Next** button. The display reads **CALIB**, the first item on the menu. Acknowledge your choice of this selection by pressing the **Enter** button. The display shows the first item in the Calibration menu shown below.

Proceed to calibrate your transmitter by using the **Next** button to select your item and the **Enter** button to specify your selection per Figure 32. At any point in the calibration you can **Cancel**, restore your prior calibration and return to the on-line mode or **Save** your new calibration.

MI IDP10-F – May 2010 4. Calibration

- NOTE

Before doing a CAL_ATO, CAL_LRV, or CAL_URV calibration, check your M1 LRV and M1 URV values to make sure that they are the proper 0% and 100% range values for your application. If not, use the Next button to go to RERANGE to set the proper M1 URV and M1 LRV. Save these changes.

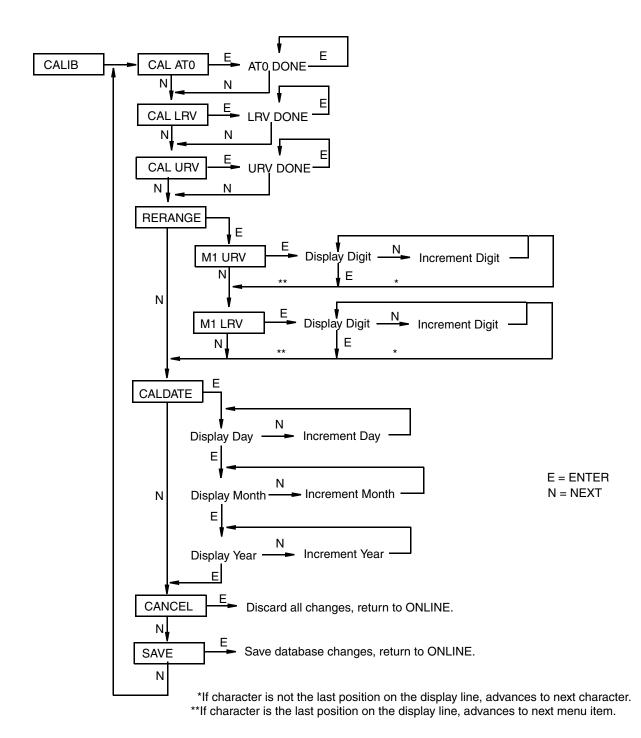


Figure 32. Calibration Structure Diagram

CAL_ATO:

To zero the transmitter at zero pressure, apply a zero differential pressure to the transmitter. Go to **CAL_ATO** using the **Next** button and press **Enter**. This can be done whether the LRV is zero or not. Completion is indicated by the display **ATO Done**.

— NOTE

This function cannot be done from a fieldbus host.

CAL_LRV:

To calibrate at 0% of range input, apply a differential pressure to the transmitter equal to the lower range value (M1 LRV) in the transmitter database. Go to CAL_LRV using the Next button and press Enter. Completion is indicated by the display LRV Done.

CAL_URV:

To calibrate at 100% of range input, apply a differential pressure to the transmitter equal to the upper range value (M1 URV) in the transmitter database. Go to CAL_URV using the Next button and press Enter. Completion is indicated by the display URV Done.

RERANGE:

To adjust 100% and 0% range values without application pressure, go to **RERANGE** using the **Next** button and press **Enter**. You can then adjust **M1 URV** and/or **M1 LRV** in the following two submenus.

M1 URV:

To edit the upper range value, press **Enter** at the prompt **M1 URV**. Use the procedure "Entering Numerical Values" in Operation section to edit this parameter.

M1 LRV:

Similar to M1 URV immediately above.

CALDATE:

This is not a required entry but can be used for recordkeeping or plant maintenance purposes. To edit the calibration date, go to **CALDATE** with the **Next** button and press **Enter**. You then can change the day, month, and year. The display shows the last date with the day flashing. Use the **Next** button to step through the menu of digits to select the desired day, then press **Enter**. Repeat this process for the month and year.

Zero Adjustment Using External Zero Button

An external zero adjustment mechanism in the electronics housing allows calibration at zero differential pressure (the **CAL ATO** function) or at the lower range value differential pressure (the **CAL LRV** function) without removing the electronics compartment cover. The mechanism is magnetically activated through the housing wall to prevent moisture from entering the enclosure.

To use this feature:

MI IDP10-F – May 2010 4. *Calibration*

1. Unlatch the external zero button by turning it 90° in a counterclockwise direction so that the screwdriver slot lines up with the two holes in the face of the adjacent part. Do **not** push the button in with the screwdriver while doing this.

2. To set or reset the zero point at zero differential pressure, apply zero differential pressure to the transmitter or use a bypass valve to equalize pressure on both sides of the transmitter. Press the external zero button until the display reads CAL ATO. Release the button. The display reads CAL WAIT and then RESET (calibration is complete).

- NOTE -

Do **not** use CAL AT0 if pressure seals are used that are at different elevations from the transmitter.

To set or reset the 0% of range input, apply the lower range value (LRV) differential pressure to the transmitter and press and hold the external zero button until the display reads **CAL LRV** (it reads **CAL ATO** first). Release the button. The display reads **CAL WAIT** and then **RESET** (calibration is complete).

- NOTE -

If the optional display is not present, the same functions can be accomplished by depending on the length of time the external zero button is depressed. Press and hold the button for 1 to 3 seconds for **CAL ATO** or for 5 or more seconds for **CAL LRV**. Therefore, if your LRV is zero, just depress the button for a few seconds. However, if your LRV is not zero, use **caution** when using the external zero button without the optional display because you must rely strictly on the length of time the button is depressed to differentiate between **CAL ATO** and **CAL LRV**.

- 3. Another possible message is **DISABLD** if **EX ZERO** is configured **EXZ DIS**.
- 4. If additional rezeroing is required after Steps 1 and 2 have been accomplished, repeat Step 2.
- 5. Relatch the external zero button by turning it 90° in a clockwise direction to prevent accidental pressing of the button. Do **not** push the button in with the screwdriver while doing this.

Calibration from a Fieldbus Host

- NOTE -

Before doing a calibration, check your **PRIMARY_VALUE_RANGE** •

EU_at_100% and EU_at_0% values to make sure that they are the proper values for your application. If not, adjust these values as necessary. Refer to "Changing the Primary Range Values (Reranging) by Editing the Transducer Block Parameters" on page 62.

1. Put the Transducer Block in the Out Of Service (OOS) mode and make sure the MODE_BLK • ACTUAL reads OOS.

- NOTE

It is important that you perform Steps 2 and 3 before Steps 4 and 5.

- 2. Apply the lower range value pressure to the transmitter.
- 3. Enter the value of the pressure applied to the transmitter into the **CAL_POINT_LO** parameter. Write the change to the transmitter.
- 4. Apply the upper range value pressure to the transmitter.
- 5. Enter the value of the pressure applied to the transmitter into the **CAL_POINT_HI** parameter. Write the change to the transmitter.

— NOTE -

The difference between the lower range and upper range pressures must equal or exceed the **CAL_MIN_SPAN**.

- 6. Select the method from the SENSOR_CAL_METHOD parameter (normally set for User Trim Standard Calibration).
- 7. Type in the location in the **SENSOR_CAL_LOC** parameter
- **8.** Type in the initials of the person performing the calibration in the **SENSOR_CAL_WHO** parameter
- 9. Adjust the **SENSOR_CAL_DATE** parameter.
- 10. Write the changes to the transmitter.
- 11. Put the Transducer Block in the Auto mode and make sure the MODE_BLK ACTUAL reads Auto.

MI IDP10-F – May 2010

4. Calibration

5. Configuration

Configuration Using the Optional Local Display

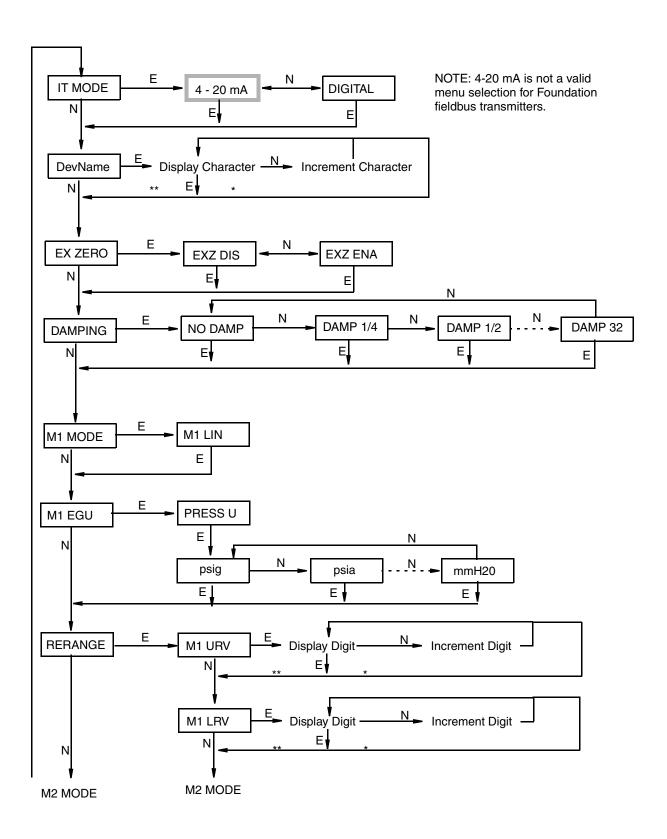
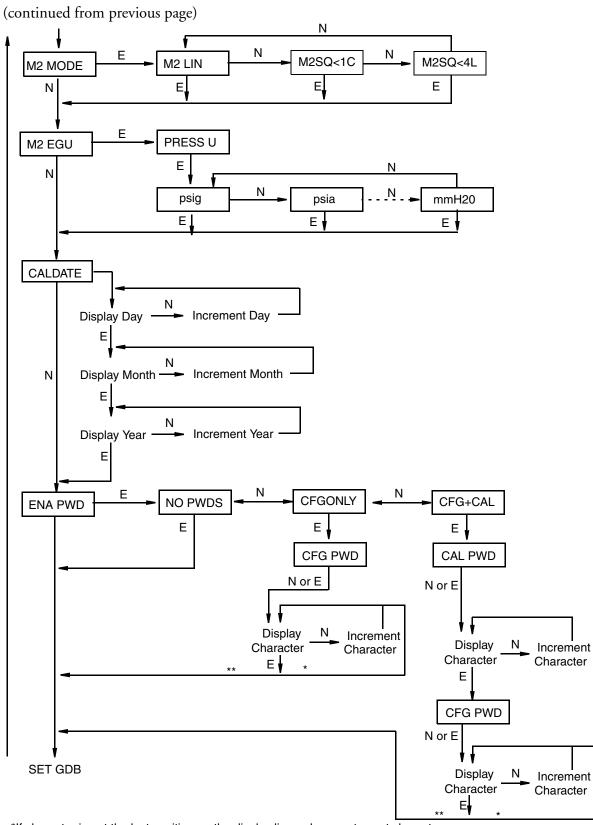

The transmitter can be configured from the optional local display or from a FOUNDATION fieldbus host. Some of the parameters can be configured from either the display and the host; others can be configured only from the display or the host.

Table 5 lists all parameters that can be configured from the optional local display, the parameter values or options selected by the factory when the transmitter is shipped, and a list of comments and/or procedures to be followed when configuring the transmitter from a fieldbus host.

Table 5. Parameters Configurable from the Local Display

Parameter	Available Choices when Configuring from the Local Display	Local Display Initial Factory Settings	Procedure when Configuring from a FOUNDATION fieldbus Host
IT_MODE	Digital only	Digital	N.A.
DevName	(up to six characters)	DevNam	N.A.
EXT_ZERO	Disable only	Disable	N.A.
DAMPING	None only	None	Edit Transducer Block SENSOR_DAMPING parameter
M1_MODE	Linear Only	Linear	N.A.
M1_EGU	User-selected engineering units	(Per Sales Order)	Edit Transducer Block PRIMARY_VALUE_RANGE •. UNITS_INDEX parameter
M1_LRV	User (configurable value)		Edit Transducer Block PRIMARY_VALUE_RANGE • EU_0 parameter.
M1_URV	User (configurable value)		Edit Transducer Block PRIMARY_VALUE_RANGE • EU_100 parameter.
M2_MODE	Linear or Type of Square Root	Linear	Edit Transducer Block THIRD_VALUE_TYPE
M2_EGU	User-defined engineering units	%	Edit Transducer Block THIRD_VALUE_RANGE •. UNITS_INDEX parameter.
CAL_DATE	Calibration Date		Edit Transducer Block SENSOR_CAL_DATE parameter.
ENA_PWD	No Passwords, Configuration, or Config and Calibration	No Passwords	N.A.


MI IDP10-F – May 2010 5. Configuration

^{*}If character is not the last position on the display line, advances to next character.

Figure 33. Configuration Structure Diagram (1 of 3)

^{**}If character is the last position on the display line, advances to next menu item.

^{*}If character is not the last position on the display line, advances to next character.

Figure 34. Configuration Structure Diagram (2 of 3)

^{**}If character is the last position on the display line, advances to next menu item.

MI IDP10-F – May 2010 5. Configuration

(continued from previous page) SET GDB CLEAR DB Performs Reset and returns to ONLINE CANCEL Discards all changes, returns to ONLINE SAVE Saves database changes, returns to ONLINE

Figure 35. Configuration Structure Diagram (3 of 3)

Commentary on Configuration Structure Diagrams

In general, use the **Next** button to select your item and the **Enter** button to specify your selection.

IT MODE:

To configure the transmitter operating mode, press **Enter**. Use the **Next** button to select **DIGITAL** and press **Enter**. The **4 - 20 mA** selection is not valid for a FOUNDATION fieldbus transmitter.

DevName:

This parameter is not applicable for a FOUNDATION fieldbus transmitter.

EX ZERO:

The External Zero feature allows the optional external zero pushbutton to be disabled for additional security. To configure this feature, go to **EX ZERO** with the **Next** button and press **Enter**. Use the **Next** button to select **EXZ DIS** or **EXZ ENA** and press **Enter**.

DAMPING:

To configure additional damping, go to **DAMPING** with the **Next** button and press **Enter**. Use the **NEXT** button to select **NO DAMP**, **DAMP** 1/4, **DAMP** 1/2, **DAMP** 1, **DAMP** 2, **DAMP** 4, **DAMP** 8, **DAMP** 16, or **DAMP** 32 and press **Enter**.

M1 MODE:

To configure the mode of the primary output, go to M1 MODE with the Next button and press Enter. Use the Next button to select M1 LIN (linear) and press Enter.

M1 EGU:

To configure engineering units for your display and transmission, go to M1 EGU with the Next button and press Enter. Use the Next button to select PRESS U and press Enter.

You are then asked to specify one of the following labels: psig, psia, inHg, ftH₂O, inH₂O, atm, bar, mbar, MPa, kPa, Pa, kg/cm², g/cm², dy/cm², cmHg, mmHg, torr, cmH₂O, or mmH₂O.

RERANGE:

To adjust 100% and 0% range values without application pressure, go to **RERANGE** with the **Next** button and press **Enter**. You can then adjust **M1 URV** and/or **M1 LRV** in the following two submenus.

M1 URV:

To edit the upper range value, press **Enter** at the prompt **M1 URV**. Use the procedure "Entering Numerical Values" in Operation section to edit this parameter.

M1 LRV:

Similar to M1URV immediately above.

— NOTE -

M1 LRV is bypassed if **M1 MODE** or **M2 MODE** is configured as square root since **M1 LRV** must be zero.

M2 MODE:

M2 is a secondary measurement that is read by the I/A Series system and can be displayed on the optional display. You might use this feature to display M1 in pressure units and M2 in other pressure units or percent of flow. To configure this parameter, go to M2 MODE with the Next button and press Enter. Use the next button to select M2 LIN (linear), M2SQ<1C (square root with cutoff below 1% of calibrated pressure range), or M2SQ<4L (square root with linear below 4% of calibrated pressure range) and press Enter.

M2 EGU:

Similar to M1 EGU.

CALDATE:

This is not a required entry but can be used for recordkeeping or plant maintenance purposes. To edit the calibration date, go to **CALDATE** with the **Next** button and press **Enter**. You then can change the day, month, and year. The display shows the last date with the day flashing. Use the **Next** button to step through the library of digits to select the desired day, then press **Enter**. Repeat this process for the month and year.

ENA PWD:

To enable or disable the password feature, go to **ENA PWD** with the **Next** button and press **Enter**. Use the **Next** button to select **NO PWDS** (password feature disabled), **CFGONLY** (password required to configure only), or **CFG+CAL** (password required to both configure and calibrate) and press **Enter**.

If you selected **CFG ONLY**, the display changes to **CFG PWD**. Press either the **Next** or **Enter** button. Use the **Next** button to step through the library of characters to select the desired first character, then press **Enter**. Your selection is entered and the second character flashes. Repeat this procedure until you have created your password. If the password has less than six characters, use blanks for the remaining spaces. When you have configured the sixth space, the display advances to the next menu item.

If you selected **CFG+CAL**, the display changes to **CAL PWD**. To create the Calibration password, press either the **Next** or **Enter** button. Use the **Next** button to step through the

MI IDP10-F - May 2010 5. Configuration

library of characters to select the desired first character, then press Enter. Your selection is entered and the second character flashes. Repeat this procedure until you have created your password. If the password has less than six characters, use blanks for the remaining spaces. When you have configured the sixth space, the display advances to **CFG PWD**. Use the same procedure to create the configuration password.

Record your new password before saving changes to the database.

SET GDB:

If your transmitter database becomes corrupted and you receive an **INITERR** message upon startup, this function enables you to rewrite all calibration and configuration values with default values.

-! CAUTION -

Any calibration and configuration values that you have entered will be lost. Therefore, **SET GDB** should **not** be selected if your transmitter is functioning normally.

Character Lists

Table 6. Alphanumeric Character List

Characters
(space)
%
*
+
_
/
0 through 9
<
=
>
A through Z (uppercase)
[
\
]
Δ
- (underscore)
∇
a through z (lowercase)

Table 7. Numeric Character List

Characters
(minus sign)(decimal point)0 through 9

Configuration Using a Fieldbus Host

The transmitter can be configured from the optional local display or from a FOUNDATION fieldbus host. Some of the parameters can be configured from either the display and the host; others can be configured only from the display or the host.

— **NOTE**After writing changes to your transmitter, wait at least 30 seconds before disconnecting your transmitter or otherwise removing power from it.

MI IDP10-F – May 2010 5. Configuration

Configuration Procedure Using a Fieldbus Host

— NOTE

This procedure is for transmitters with a **DEV_REV** of 30 HEX (48 DEC) or higher.

A Foundation Fieldbus system is composed of two main parts: A Control Application Process (CAP) and a Device Application Process (DAP). The CAP contains the Resource Block, the Analog Input Blocks, and a PID Block if one is used. The contents of these blocks are defined by the Fieldbus FOUNDATION and are configured by the host, often using a template that has been developed. The DAP contains the Transducer Block. Its contents vary with the product and are usually configured by an operator using fieldbus configurator software.

Therefore, this configuration procedure will concentrate on setting the configurable parameters in the Transducer Block. It will also describe scaling parameters in the Analog Input Blocks that also must be set.

Configuring the Transducer Block

- Open the Transducer Block. Put the block Out Of Service by setting MODE_BLK •
 Target to OOS.
- 2. Set the **PRIMARY_VALUE_RANGE UNITS_INDEX** to a pressure engineering unit, such as inH2O, kg/cm2, and so forth. For unit codes, see Table 8.
- 3. Set the **THIRD_VALUE_TYPE** to Pressure Linear, Flow_comp_with zero_cutoff, or Flow_comp_with_linear_extrapolation.

NOTE

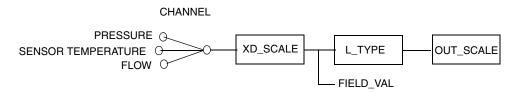
THIRD_VALUE_TYPE cannot be written as one of the flow selections if **PRIMARY_RANGE_VALUE • EU_0** is not zero. Thus the order of configuring the parameters is important.

Example 1: To go from a 20 to 100 in H_2O pressure application to a 0 to 100 in H_2O flow application, set the **PRIMARY_RANGE_VALUE** • **EU_0** to zero and then set the **THIRD_VALUE_TYPE** to one of the flow selections.

Example 2: To go from a 0 to 100 in H_2O flow application to a 20 to 100 in H_2O pressure application, set the **THIRD_VALUE_TYPE** to pressure and then set the **PRIMARY_RANGE_VALUE • EU_0** to 20 in H_2O .

- 4. Set the **THIRD_VALUE_RANGE UNITS_INDEX** to match the units in **XD_SCALE** for the AI Block connected to this channel. The units available are the same as **PRIMARY_VALUE_RANGE** except for the addition of % Flow.
- 5. The factory setting for **SENSOR_DAMPING** is **0**. If the process is noisy, increase the value in small increments, up to 32 seconds maximum. Select one of the following numbers: **0**, **0.25**, **0.50**, **1**, **2**, **4**, **8**, **16** or **32**.
- **6.** Write the changes to the transmitter.

Unit Unit Unit Unit Unit Unit Name **Unit Code** Name Code Unit Name Code Name Code Pa 1139 1145 1130 mmHg0C 1158 torr kgcm2 MPa 1132 1140 inH2O 1146 cmHg 31500 atm kPa 1133 1142 mmH2O20 1151 cmH2O 31502 psia ftH2O20C bar 1137 1143 1154 dycm2 31572 psig mbar 1138 1144 1155 gcm2 inHg


Table 8. Unit names and Unit Codes

Configuring the Scaling Parameters in the Analog Input Block

- Open the Analog Input Block. Put the block Out Of Service by setting MODE_BLK
 Target to OOS.
- 2. The **CHANNEL** parameter can be set to any of the following, depending upon what measurement you want to use:

<u>CHANN</u>	<u>CHANNEL</u>	
<u>EL</u>	<u>Parameter</u>	Transducer Block Value Used By AI
<u>Number</u>		Block
1	Pressure	Primary Value
2	Sensor	Secondary Value (Transmitter
	Temperature	Temperature)
3	Flow	Third Value

- 3. The S Temperature is the temperature inside the pressure sensor used for compensation purposes. It may not be equal to the ambient temperature. It definitely is not the process temperature, and therefore should not be used for control purposes.
- 4. Write the changes to the transmitter.
- 5. Set the XD_SCALE, L_TYPE, and OUT_SCALE parameters as follows:

NOTE: FIELD_VAL IS THE MEASUREMENT IN % OF XD_SCALE

If CHANNEL is set for Pressure

Set the XD_SCALE•UNITS_INDEX exactly the same as the PRIMARY_VALUE_RANGE•UNITS_INDEX.

MI IDP10-F – May 2010 5. Configuration

Set the XD_SCALE range to the desired range. It doesn't have to match the PRIMARY_VALUE_RANGE values.

If L_TYPE is Direct, set the OUT_SCALE parameters to match those of the XD_SCALE.

If L_TYPE is Indirect, set the OUT_SCALE at the desired unit and values.

If L_TYPE is Indirect Sq Rt, set the OUT_SCALE to % (for % flow).

If CHANNEL is set for Sensor Temperature

Set the XD_SCALE•UNITS_INDEX to °C.

Set the XD_SCALE range to the desired range. Note that your transmitter can only read values within the range of (-50 to +105 °C).

If L_TYPE is Direct, set the OUT_SCALE parameters to match those of the XD_SCALE.

If L_TYPE is Indirect, set the OUT_SCALE at the desired unit and values. See example below.

L_TYPE Indirect Sq Rt is not applicable,

Example of Using Indirect L_TYPE

If you wanted to output sensor temperature from 0 to 100°C in degrees Fahrenheit:

Set the XD_SCALE•UNITS_INDEX to °C.

Set the XD_SCALE: EU_at 100% to 100, EU_at_0% to 0, and UNITS_INDEX to °C.

Set the L_TYPE as Indirect,

Set the OUT_SCALE: EU_at 100% to 212, EU_at_0% to 32, and UNITS_INDEX to °F. These are the equivalent values in °F of 0 100°C and 0°C respectively.

If CHANNEL is set for Flow and THIRD_VALUE_TYPE is Pressure Linear

Set the XD_SCALE •UNITS_INDEX exactly the same as the THIRD VALUE RANGE•UNITS INDEX.

Set the XD_SCALE range to the desired range. It doesn't have to match the THIRD VALUE RANGE values.

If L_TYPE is Direct, set the OUT_SCALE parameters to match those of the XD_SCALE.

If L_TYPE is Indirect, set the OUT_SCALE at the desired unit and values.

If L_TYPE is Indirect Sq Rt, set the OUT_SCALE at the desired unit and values.

If CHANNEL is set for Flow and THIRD_VALUE_TYPE is Flow

Set the XD_SCALE •UNITS_INDEX exactly the same as the THIRD_VALUE_RANGE•UNITS_INDEX (%).

Set the XD_SCALE range to the desired range. It doesn't have to match the THIRD_VALUE_RANGE values.

If L_TYPE is Direct, set the OUT_SCALE parameters to match those of the XD_SCALE.

If L_TYPE is Indirect, set the OUT_SCALE at the desired unit and values.

L_TYPE Indirect Sq Rt is not applicable,

6. Write the changes to the transmitter.

MI IDP10-F – May 2010 5. Configuration

Application Specific Configurations

Tables 9, 10, 11 and 12 show typical configuration parameters for various applications. Additional parameter configuration is required for various applications

Table 9. Flow Applications

Application Parameters		Application 1	Application 2	Application 3
Applica	tion	Flow	Flow	Flow
Square	Root is done where?	In host controller	In transmitter	In Transmitter
Calibrated Range		0 to 50 inH2O	0 to 75 inH2O	0 to 200 inH2O
Transmi	itter output	0 to 50 inH2O	0 to 300 GPM	0 to 100%
Optional Indicator displays		0 to 50 inH2O (Note 1)	0 to 75 inH2O (Note 2)	0 to 200 inH2O
3,		0 to 50 inH2O (Note 1)	0 to 100% (Note 3 & 4)	0 to 100% (Note 3 & 4)
Output	of AI #1 to host system	0 to 50 inH2O (Note 1)	0 to 300 GPM (Note 3)	0 to 100% (Note 3)
Output	of Al#2 to host system	-50 to +105 °C	0 to 75 inH2O (Note 5)	-58 to +220 °F
Block	Parameter Name	Configuration	Configuration	Configuration
	PRIMARY_VALUE_RANGE - EU_100	50	75	200
	PRIMARY _VALUE_RANGE - EU_0	0	0	0
	PRIMARY _VALUE_RANGE - UNITS_INDEX	inH2O	inH2O	inH2O
ТВ	THIRD_VALUE_RANGE - EU_100		100	100
	THIRD_VALUE_RANGE - EU_0		0	0
	THIRD_VALUE_RANGE - UNITS_INDEX		%	%
	THIRD_VALUE_TYPE		Flow (Note 6)	Flow (Note 6)
	CHANNEL	Pressure	Flow	Flow
	XD_SCALE - EU_100	50	100	100
	XD_SCALE - EU_0	0	0	0
Al #1	XD_SCALE - UNITS_INDEX	inH2O	%	%
AI#1	L_TYPE	Direct	Indirect	Direct
	OUT_SCALE - EU_100	50	300	100
	OUT_SCALE - EU_0	0	0	0
	OUT_SCALE - UNITS_INDEX	inH2O	GPM	%
	CHANNEL	S Temp	Pressure	S Temp
	XD_SCALE - EU_100	105	75	105
	XD_SCALE - EU_0	-50	0	-50
AI #2	XD_SCALE - UNITS_INDEX	ъС	inH2O	^o C
\ 11.112	L_TYPE	Direct	Direct	Indirect
	OUT_SCALE - EU_100	105	75	220
	OUT_SCALE - EU_0	-50	0	-58
	OUT_SCALE - UNITS_INDEX	ōС	inH2O	ºF

NOTES:

- 1. Linear with pressure because Square root extraction is done in the host controller, not in the transmitter.
- 2. CAUTION The output being shown on the display is linear with pressure and not linear with flow rate.
- 3. The 0 to 100% values being shown on the indicator and the output of AI#1 to the host system is linear with the flow rate.
- 4. If the power to the transmitter is cycled, the indicator switches from 0 to 100% of flow rate to the pressure EGU's that are linear with pressure.

- 5. The output from AI#2 is linear with pressure, not flow rate.
- $\textbf{6.} \quad \text{Set for either flow_comp_with_zero_cutoff or flow_comp_with_linear_extrapolation}.$

Table 10. Pressure Applications

		11		
Applicat	ion Parameters	Application 1	Application 2	Application 3
Application	on	Pressure	Pressure	Pressure
Calibrate	d Range	0 to 50 PSI	0 to 75 Kg/cm2	0 to 200 Bar
Transmitt	er output	0 to 50 PSI	0 to 75 Kg/cm2	0 to 100%
Indicator	displays	0 to 50 PSI	0 to 75 Kg/cm2	0 to 200 Bar
After pushing Enter key on indicator, the indicator displays		0 to 50 PSI	0 to 75 Kg/cm2	0 to 200 Bar
Output of AI #1 to host system		0 to 50 PSI	0 to 75 Kg/cm2	0 to 100%
Output of	Al #2 (internal temperature) to host system	ºF	ōС	º F
Block	Parameter Name	Configuration	Configuration	Configuration
ТВ	PRIMARY_VALUE_RANGE - EU_100	50	75	200
	DDIMADY VALUE DANIOE ELLO	0	0	0

Block	Parameter Name	Configuration	Configuration	Configuration
TB	PRIMARY_VALUE_RANGE - EU_100	50	75	200
	PRIMARY _VALUE_RANGE - EU_0	0	0	0
	PRIMARY _VALUE_RANGE - UNITS_INDEX	PSI	Kg/cm2	Bar
AI #1	CHANNEL	Pressure	Pressure	Pressure
	XD_SCALE - EU_100	50	75	200
	XD_SCALE - EU_0	0	0	0
	XD_SCALE - UNITS_INDEX	PSI	Kg/cm2	Bar
	L_TYPE	Direct	Direct	Indirect
	OUT_SCALE - EU_100	50	75	100
	OUT_SCALE - EU_0	0	0	0
	OUT_SCALE - UNITS_INDEX	PSI	Kg/cm2	%
AI #2	CHANNEL	S Temp	S Temp	S Temp
	XD_SCALE - EU_100	105	105	105
	XD_SCALE - EU_0	-50	-50	-50
	XD_SCALE - UNITS_INDEX	∘C	⁶ C	⁶ C
	L_TYPE	Indirect	Direct	Indirect
	OUT_SCALE - EU_100	220	105	220
	OUT_SCALE - EU_0	-58	-50	-58
	OUT_SCALE - UNITS_INDEX	ºF	ºC	ºF

MI IDP10-F – May 2010 5. Configuration

Table 11. Open Tank or Dry Leg Level Applications

Application Parameters	Application 1	Application 2	Application 3
Application	Open Tank (see Note)	Dry Leg	Dry Leg
Calibrated Range	0 to 50 inH2O	0 to 75 kPa	20 to 200 mmH2O
Transmitter output	0 to 40 inches	0 to 75 kPa	0 to 100%
Indicator displays	0 to 50 inH2O	0 to 75 kPa	20 to 200 mmH2O
After pushing Enter key on indicator, the indicator displays	0 to 50 inH2O	0 to 75 kPa	20 to 200 mmH2O
Output of AI #1 to host system	0 to 40 inches	0 to 75 kPa	0 to 100%
Output of Al #2 (internal temperature) to host system	°F	ōС	^o C

Block	Parameter Name	Configuration	Configuration	Configuration
	PRIMARY_VALUE_RANGE - EU_100	50	75	200
TB	PRIMARY _VALUE_RANGE - EU_0	0	0	20
	PRIMARY _VALUE_RANGE - UNITS_INDEX	inH2O	kPa	mmH2O
	CHANNEL	Pressure	Pressure	Pressure
	XD_SCALE - EU_100	50	75	200
	XD_SCALE - EU_0	0	0	20
AI #1	XD_SCALE - UNITS_INDEX	inH2O	kPa	mmH2O
AI#I	L_TYPE	Indirect	Direct	Indirect
	OUT_SCALE - EU_100	40 (see Note)	75	100
	OUT_SCALE - EU_0	0	0	0
	OUT_SCALE - UNITS_INDEX	in	kPa	%
	CHANNEL	S Temp	S Temp	S Temp
	XD_SCALE - EU_100	105	105	105
	XD_SCALE - EU_0	-50	-50	-50
A1 #0	XD_SCALE - UNITS_INDEX	^o C	°C	⁶ C
AI #2	L_TYPE	Indirect	Direct	Direct
	OUT_SCALE - EU_100	220	105	105
	OUT_SCALE - EU_0	-58	-50	-50
	OUT_SCALE - UNITS_INDEX	ºF	⁶ C	⁶ C

NOTE

In this example, the fluid level change is 40 inches, with a specific gravity of 1.25, which results in a range of 0 to 50 inH2O.

5. Configuration MI IDP10-F – May 2010

Table 12. Wet Leg Level and Dual Seal Applications

Application Parameters	Application 1	Application 2	Application 3
Application	Wet Leg Level	Dual Seal	Dual Seal (Note 1)
Calibrated Range	-100 to 0 inH2O	-31 to -3 ft H2O	-190 to -30 mmH2O
Transmitter output	-100 to 0 inH2O	0 to 100%	0 to 200 mmH2O
Indicator displays	-100 to 0 inH2O	-31 to -3 ft H2O	-190 to -30 mmH2O
After pushing Enter key on indicator, the indicator displays	-100 to 0 inH2O	-31 to -3 ft H2O	-190 to -30 mmH2O
Output of Al #1 to host system	-100 to 0 inH2O	0 to 100%	0 to 200 mmH2O
Output of Al #2 (internal temperature) to host system	°F	ōС	ōС

Block	Parameter Name	Configuration	Configuration	Configuration
ТВ	PRIMARY_VALUE_RANGE - EU_100	0	-3	-30
	PRIMARY _VALUE_RANGE - EU_0	-100	-31	-190
	PRIMARY _VALUE_RANGE - UNITS_INDEX	inH2O	ft H2O	mmH2O
	CHANNEL	Pressure	Pressure	Pressure
	XD_SCALE - EU_100	0	-3	-30
	XD_SCALE - EU_0	-100	-31	-190
Al #1	XD_SCALE - UNITS_INDEX	inH2O	ft H2O	mmH2O
AI#I	L_TYPE	Direct	Indirect	Indirect
	OUT_SCALE - EU_100	0	100	200
	OUT_SCALE - EU_0	-100	0	0
	OUT_SCALE - UNITS_INDEX	inH2O	%	mm (see Note 2)
	CHANNEL	S Temp	S Temp	S Temp
	XD_SCALE - EU_100	105	105	105
	XD_SCALE - EU_0	-50	-50	-50
A1 #0	XD_SCALE - UNITS_INDEX	ōC	ōС	ōС
AI #2	L_TYPE	Indirect	Direct	Direct
	OUT_SCALE - EU_100	220	105	105
	OUT_SCALE - EU_0	-58	-50	-50
	OUT_SCALE - UNITS_INDEX	ºF	ōС	ōС

NOTE

- 1. For this example, the calibrated range (-190 to -30 mmH2O) is based upon a span of 200 mm of 0.8 SG fluid.
- 2. Output configured in units of length. EGUs available with **DEV_REV 15** or later.

MI IDP10-F - May 2010 5. Configuration

Changing the Primary Range Values (Reranging) by Editing the Transducer Block Parameters

- 1. Open the Transducer Block. Put the block Out Of Service by setting MODE_BLK Target to OOS.
- 2. Set the **PRIMARY_VALUE_RANGE** sub-parameters as follows:

enter the 100% value of the calibrated range desired EU 0 enter the 0% value of the calibrated range desired

- 3. Write the changes to the transmitter.
- 4. Calibrate the transmitter. Refer to "Calibration" on page 39.
- 5. Set the Target Mode in the Transducer Block to **Auto**. Make sure that the **MODE_BLK • ACTUAL** value reads **Auto**. Once in the Auto mode, the **PRIMARY_VALUE** and **SECONDARY_VALUE** should display the appropriate values. If not, check the Maintenance section. If the block does not change to **Auto**, go to **BLOCK_ERR_DESC_1** to see what is wrong. Fix the problem and close the Transducer Block window.
- 6. Reconfigure the CHANNEL, XD_SCALE, L_TYPE, and OUT_SCALE parameters in the Analog Input Block as necessary. See "Configuring the Scaling Parameters in the Analog Input Block" on page 55.

Disabling the Link Active Scheduler (LAS)

To disable the LAS, right mouse click on **DEV_TAG** and set "Device Type = yes" to OK.

- NOTE -

If more than one device has the LAS feature configured on, the LAS is applied to the devices in the order of their Node Address. Therefore, take LAS into consideration when selecting the Node Address.

- ! CAUTION

Do not modify the parameters in the Link Settings (Advanced) tab without good reason. If you must modify parameters for certain transmitters, Invensys will recommend settings. Modifying these parameters can have an adverse affect on data throughput rates. If settings are incorrectly modified, some devices may disappear from the network.

Invensys recommends, as a prudent measure, that multiple devices (two or more) on the bus be configured as link master devices.

6. Maintenance

- ADANGER

For nonintrinsically safe installations, to prevent a potential explosion in a Division 1 hazardous area, de-energize transmitters before you remove threaded housing covers. Failure to comply with this warning could result in an explosion resulting in severe injury or death.

- NOTE

After writing changes to your transmitter, wait at least 30 seconds before disconnecting your transmitter or otherwise removing power from it.

Troubleshooting

Simulation Mode

The transmitter has a simulation capability that can be used for debugging/troubleshooting the system when the process is not running. Once the simulation jumper is set, the user can select any value as the input to the AI Block for testing or debugging purposes. The procedure is as follows:

- 1. Place the appropriate AI Block in Out of Service (OOS) mode using the configurator software.
- 2. Remove the housing cover and the optional indicator.
- **3.** To activate Simulation mode, move the simulation jumper to the lower position as shown in Figure 36.

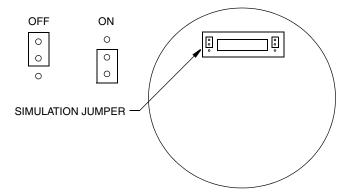


Figure 36. Simulation Jumper

- 4. Replace the indicator and housing cover, if desired.
- 5. Set the SIMULATE_ENABLE DISABLE to Active

MI IDP10-F - May 2010 6. Maintenance

6. Set the SIMULATE_STATUS_QUALITY to Good_NonCascade (suggested setting) or other appropriate setting.

- 7. Type in the value you want as the output from the Transducer Block in the **Simulate_Value** parameter.
- 8. Click on the **Write Changes** button. If you try to send a simulated output without putting the jumper in the correct position (step #2), the software will not change anything (device did not accept this parameter value) and you will get an error response.
- 9. Set the AI Block to **AUTO** mode
- 10. Proceed with troubleshooting remembering that the output of the AI Block has been set by the value typed in step #7
- 11. After completion of troubleshooting, set the AI Block to Out of Service (OOS)
- 12. Set the SIMULATE_ENABLE_DISABLE to Disabled
- 13. Click on the **Write Changes** button.
- 14. Place the AI Block in **AUTO** mode using the configurator software. Make sure the **MODE BLK • ACTUAL reads AUTO.**
- 15. Reset the jumper moved in Step 3.
- 16. Reassemble electronic module, indicator and housing cover.

Restart

The **RESTART** parameter in the Resource Block should only be used when the configuration in the transmitter is incorrect and you cannot fix the problem by using the troubleshooting information in this section. In all cases, try cycling the power to the transmitter first. Then go back to the block with the problem and try to write the changes to the transmitter. If that does not clear the problem, proceed with the RESTART procedure.

-! CAUTION

When you do a "Defaults" RESTART command in the Resource Block, the configured parameters will automatically default to the status and values predetermined by the Foundation. These are the same as the initial factory settings shown in Appendix A for the Resource, Analog Input, and PID Blocks but are different than those shown for the Transducer Block.

- 1. Open the Resource Block and put it in the OOS mode.
- 2. Open the RESTART box and select one of the following:
 - Uninitialized do not use (may not appear on list)
 - Run this is the default setting, the nominal state when not restarting
 - Defaults Sets the parameters to the Foundation defaults, which may be different than the initial factory settings. This will reset all configurable function block application objects. It will also clear all configured Trend and Link Objects. A

- restart of the processor will also be performed automatically after re-initialization has been completed.
- Processor does a warm restart of CPU and has the same effect as cycling the power (OFF/ON) to the transmitter
- 3. Click on the Write Changes button.
- 4. Put the Resource Block back into AUTO mode (the RESTART selection will automatically default to the Run position).
- 5. Reconfigure the appropriate function blocks.

Switch Mode Checklist

- 1. Verify that the block is scheduled. (Note that resource block and transducer block are always scheduled.)
- 2. Check the error messages in the **BLOCK_ERR_DESC_1** parameter.
- 3. Verify that resource block is in Auto Mode.
- 4. Verify that requested mode is permitted.

Schedule Download Checklist

- 1. Verify that all blocks in the network have different tags.
- 2. Verify that no two blocks from the same devices are scheduled to be executed at the same time.
- 3. Verify that there is enough time for block execution.

Block Errors

Table 13 lists all of the possible error codes in the various function blocks. Not all error codes are possible in all of the blocks. The condition number is shown in the **BLOCK_ERR** parameter for all blocks (and in the **XD_ERROR** in the Transducer Block).

Table 13. Block Errors

Bit	N. ID.
Number	Name and Description
0	No Error
1	Block Configuration Error: (See Table 14)
2	Link Configuration Error: A link used in one of the function blocks is improperly configured.
3	Simulate Active: The Simulation jumper is enabled. This is not an indication that the I/O blocks are using simulated data.
4	Local Override:
5	Device Fault State Set:
6	Device Needs Maintenance Soon:

MI IDP10-F – May 2010 6. *Maintenance*

Table 13. Block Errors (Continued)

Bit Number	Name and Description	
7	Input Failure/Process Variable Has Bad Status: The hardware is bad, an input is not connected, or a status is being simulated.	
8	Output Failure: The output is bad based primarily upon a bad input.	
9	Memory Failure: A memory failure has occurred in Flash, RAM or EEPROM	
	memory.	
10	Lost Static Data: Static data stored in non-volatile memory has been lost.	
11	Lost NV Data: Non-volatile data stored in non-volatile memory has been lost.	
12	Readback Check Failed:	
13	Device Needs Maintenance Now:	
14	Power Up: The Device was just powered - wait	
15	Out Of Service: The actual mode is OSS, change to AUTO	

Table 14. Configuration Errors

Error	Description			
Resource Block				
All Static Parameters are Reset	Device needs a complete download			
Analog Input (AI) Block				
XD_SCALE.EU_0 ≥ XD_SCALE.EU_100	Low end of scale must be less than high end			
OUT_SCALE.EU_0 ≥ OUT_SCALE.EU_100	Low end of scale must be less than high end			
OUT_SCALE = XD_SCALE and L_TYPE = Direct	Scales must match if L_TYPE is Direct			
XD_SCALE.UNITS_INDEX ≠ Pressure Channel Units	Units in Transducer Block and AI Block must match			
XD_SCALE.UNITS_INDEX ≠ Temperature	Units in Transducer Block and AI Block			
Channel Units	must match			
XD_SCALE.UNITS_INDEX ≠ Flow Channel Units	Units in Transducer Block and AI Block must match			
AI Block not scheduled	AI Block must be scheduled to run by a host			
Invalid Channel	AI Block Channel must be 1, 2, or 3			
Proportional Integral, Derivative (PID) Block				
SP not initialized	SP has never been written			
BYPASS not initialized	BYPASS must be set to On or Off			
SHED_OPT not initialized	SHED_OPT must be initialized for ROUT and RCAS modes			
GAIN not initialized	GAIN must be greater than zero			
OUT_SCALE.EU_0 ≥ OUT_SCALE.EU_100	Low end of scale must be less than high end			
PV_SCALE.EU_0 ≥ PV_SCALE.EU_100	Low end of scale must be less than high end			

Table 14. Configuration Errors (Continued)

Error	Description
FF_SCALE.EU_0 ≥ FF_SCALE.EU_100	Low end of scale must be less than high end
TRK_SCALE.EU_0 ≥ TRK_SCALE.EU_100	Low end of scale must be less than high end
PID Block not scheduled	PID Block must be scheduled to run by a
	host

Interboard Communication Errors/Status

The SENSOR_STATUS parameter in the Transducer Block reflects the state of the sensor board. If the state is normal, SENSOR_STATUS indicates the following:

SENSOR_STATUS
SENSOR STATUS No Parameter Offset

If something occurs that affects the state of the sensor board, a status message will be posted, for example:

SENSOR_STATUS Sensor Board is offline due to config SENSOR STATUS No Parameter Offset

which indicates the sensor interface is offline because someone is attempting to configure the transmitter via the local LCD display.

If a particular parameter is at fault it is displayed in the second portion of SENSOR_STATUS.

The following is a list of all the possible status messages:

- 1. No serial comm between Sensor and MAU
- 2. Sensor board is busy
- 3. Sensor board-Change to ONLINE failed after Re-Init
- 4. Sensor board is not in ONLINE mode
- 5. Sensor board M1_MODE is not LINEAR
- 6. Sensor board is not good for Pressure measurement
- 7. Sensor board M1EOFF or M2EOFF parameter is not ZERO
- 8. Sensor board M2 mode 'OFF' is selected
- 9. Sensor board M1DAMP parameter is not zero
- 10. EGU for M1 is not supported
- 11. EGU for M2 is not supported
- 12. Sensor board M2EGU should be '%flow
- 13. Transducer Block Initializing
- 14. EEPROM Error
- 15. Sensor Database is updating
- 16. Sensor Board is offline due to cal
- 17. Sensor Board is offline due to config

MI IDP10-F – May 2010 6. Maintenance

18. Sensor Board is Out Of Service

In general, any message that is permanently displayed or keeps returning for unknown reasons indicates a hardware failure of the sensor board and the board needs service.

Parts Replacement

Parts replacement is generally limited to the electronics module assembly, housing assembly, sensor assembly, terminal block assembly, cover O-rings, and optional display. For part numbers relating to the transmitter and its options, see PL009-005.

Replacing the Terminal Block Assembly

- 1. Turn off transmitter power source.
- 2. Remove the Field Terminals and the Electronics compartment covers by rotating them counterclockwise. Screw in cover lock if applicable.
- 3. Remove the digital display (if applicable) as follows: grasp the two tabs on the display and rotate it about 10° in a counterclockwise direction.
- 4. Remove the electronics module from the housing by loosening the two captive screws that secure it to the housing. Then pull the module out of the housing far enough to gain access to the cable connectors on the rear of the module.
- 5. Remove the four socket head screws securing the terminal block.
- **6.** Disconnect the terminal block cable connector from the electronics module.
- 7. Remove the terminal block and the gasket under it.
- 8. Connect the new terminal block cable connector to the electronics module.
- 9. Install the new terminal block and new gasket and reinstall the four screws to 0.67 N·m (6 in·lb) in several even increments.
- 10. Reinstall the electronics module (and digital display if applicable).
- 11. Reinstall the covers onto the housing by rotating them clockwise to seat the O-ring into the housing and then continue to hand tighten until the each cover contacts the housing metal-to-metal. If cover locks are present, lock the cover per the procedure described in "Cover Locks" on page 27.
- 12. Turn on transmitter power source.

Replacing the Electronics Module Assembly

To replace the electronics module assembly, refer to Figure 37 and proceed as follows:

- 1. Turn off transmitter power source.
- 2. Remove the electronics compartment cover by rotating it counterclockwise. Screw in cover lock if applicable.
- 3. Remove the digital display (if applicable) as follows: grasp the two tabs on the display and rotate it about 10° in a counterclockwise direction. Pull out the display and disconnect its cable.

4. Remove the electronics module from the housing by loosening the two captive screws that secure it to the housing. Then pull the module out of the housing far enough to gain access to the cable connectors on the rear of the module.

-! CAUTION

The electronics module is "one assembly" at this point and is electrically and mechanically connected to topworks with a flexible ribbon signal cable, a 2-wire power cable, and in some cases, a cable for an external zero pushbutton. Do **not** exceed the slack available in these cables when removing the assembled module.

- 5. Unplug all cable connectors from the rear of the electronics module and place the module on a clean surface.
- 6. Predetermine connector orientation, then insert the cable connectors into the replacement module. Replace the module in the housing using care not to pinch the cables between the module and the housing. Tighten the two screws that secure the module to the housing.
- 7. Connect the cable from the digital display to the electronics module. Ensure that the O-ring is fully seated in the display housing. Then, holding the digital display by the tabs at the sides of the display, insert it into the housing. Secure the display to the housing by aligning the tabs on the sides of the assembly and rotating it about 10° in a clockwise direction.
- 8. Reinstall the cover onto the housing by rotating it clockwise to seat the O-ring into the housing and then continue to hand tighten until the cover contacts the housing metal-to-metal. If cover locks are present, lock the cover per the procedure described in "Cover Locks" on page 27.
- 9. Turn on transmitter power source.

The module replacement procedure is now complete.

MI IDP10-F – May 2010 6. Maintenance

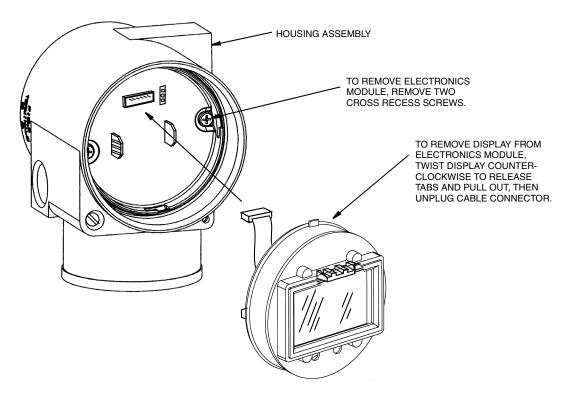


Figure 37. Replacing the Electronics Module Assembly and Display

Removing and Reinstalling a Housing Assembly

To remove and reinstall a housing assembly, refer to Figure 37 and proceed as follows:

- 1. Remove the electronics module per Steps 1 through 5 in the previous procedure.
- 2. If your housing has an anti-rotation screw, remove the red lacquer from the screw recess. Turn the screw three full turns counterclockwise.
- 3. If your housing has a retention clip, remove the red lacquer from the screw recess. Remove the screw completely, and slide the clip off the housing. Save the clip and screw for future use,
- 4. Remove the housing by rotating it counterclockwise (when viewed from the top). Use caution to avoid damaging the sensor cable.
- 5. Inspect the sensor O-ring for damage. If the O-ring is damaged, replace it with the appropriate O-ring. (See parts list for your transmitter). Lubricate the O-ring with silicone lubricant (Foxboro Part Number 0048130 or equivalent). Verify that the O-ring is situated in the groove of the neck.
- **6.** Feed the sensor cable through the housing neck into the electronics compartment.
- 7. Screw the housing onto the sensor neck until it bottoms. Do not over tighten. Be careful not to damage the sensor cable or dislodge the neck O-ring.
- 8. If your housing has an anti-rotation screw, engage the screw until it touches the sensor neck and back it off 1/8th turn. It is important that the screw is not touching the sensor. Fill the screw recess with red lacquer (Foxboro Part Number X0180GS or

- equivalent). the housing may then be rotated up to one full turn counterclockwise for optimum access.
- 9. If your housing has a retention clip, insert the clip over the boss in the housing neck so that the hole in the clip is aligned with the hole in the boss. Install the screw but do not tighten. Rotate the housing up to one full turn counterclockwise for optimum access. Tighten the retention clip screw and fill the screw recess with red lacquer (Foxboro Part Number X0180GS or equivalent). The housing can still be rotated for optimum access.
- 10. Reinstall the electronics module per Steps 6 through 9 in the previous procedure.

Adding the Optional Display

To add the optional display, refer to Figure 37 and proceed as follows:

- 1. Turn off transmitter power source.
- 2. Remove the electronics compartment cover by rotating it counterclockwise. Screw in cover lock if applicable.
- 3. Plug the display into the receptacle at the top of the electronics assembly.
- 4. Ensure that the O-ring is seated in its groove in the display housing. Then insert the display into the electronics compartment by grasping the two tabs on the display and rotating it about 10° in a clockwise direction.
- 5. Install the new cover (with a window) onto the housing by rotating it clockwise to seat the O-ring into the housing and then continue to hand tighten until the cover contacts the housing metal-to-metal. If cover locks are present, lock the cover per the procedure described in "Cover Locks" on page 27.
- **6.** Turn on transmitter power source.

Replacing the Sensor Assembly

To replace the sensor assembly, refer to Figures 38 and 39 and proceed as follows:

- 1. Remove the electronics module as described above.
- 2. Remove the housing as described above.
- 3. Remove the process covers from sensor by removing two hex head bolts.
- 4. Replace the gaskets in the process covers.
- 5. Install the process covers and housing on the new sensor. Torque cover bolts to 100 N·m (75 lb·ft) in several even increments. Torque values are 68 N·m (50 lb·ft) when 316 ss bolts are specified; 75 N·m (55 lb·ft) when B7M bolts are specified.
- 6. Reinstall electronics module.
- 7. Pressure test the sensor and process cover assembly by applying a hydrostatic pressure of 150% of the maximum static and overrange pressure rating to both sides of the process cover/sensor assembly simultaneously through the process connections. Hold pressure for one minute. There should be no leakage of the test fluid through the gaskets. If leakage occurs, retighten the cover bolts per Step 5 (or replace the gaskets) and retest.

Perform hydrostatic test with a liquid and follow proper hydrostatic test procedures.

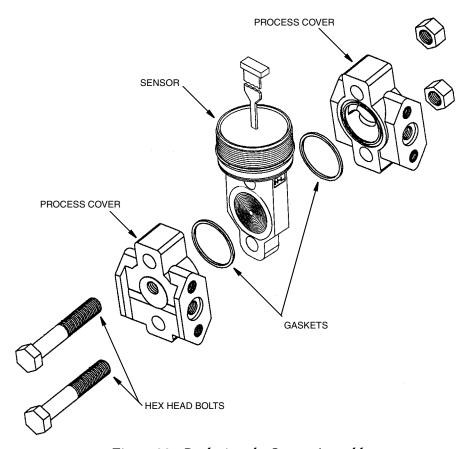


Figure 38. Replacing the Sensor Assembly

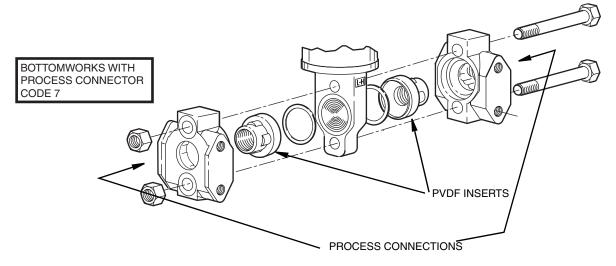


Figure 39. Replacing the Sensor Assembly (pvdf Inserts)

Rotating Process Covers for Venting

As received, your IASPT Transmitter provides sensor cavity draining without the need for side drain connections, regardless of whether the transmitter is mounted vertically or horizontally. Sensor cavity venting is provided by mounting the transmitter horizontally or with the optional vent screw (-V). However, if you did not specify this option, you can still achieve venting (instead of draining) with vertical mounting by rotating the process covers. See Figure 40.

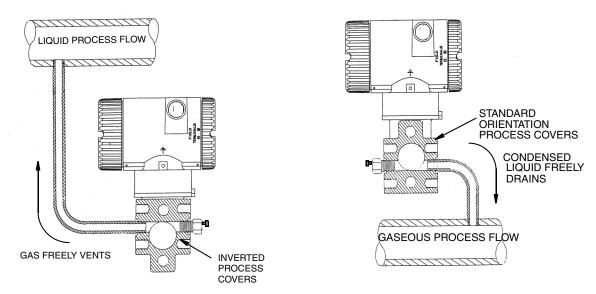


Figure 40. Sensor Cavity Venting and Draining

To rotate the process covers, refer to Figure 38 and proceed as follows:

- 1. Turn off the transmitter power source and remove the transmitter from the process.
- 2. Remove the process covers from sensor by removing two hex head bolts.
- 3. Replace gaskets in process covers.
- 4. Rotate the process covers so that the longer tab is at the bottom.
- 5. Reinstall process covers and bolts. Torque cover bolts to 100 N·m (75 lb·ft) in several even increments. Torque values are 68 N·m (50 lb·ft) when 316 ss bolts are specified; 75 N·m (55 lb·ft) when B7M bolts are specified.
- 6. Pressure test the sensor and process cover assembly by applying a hydrostatic pressure of 150% of the maximum static and overrange pressure (see "Standard Specifications" on page 5) to both sides of the process cover/sensor assembly simultaneously through the process connections. Hold pressure for one minute. There should be no leakage of the test fluid through the gaskets. If leakage occurs, retighten the cover bolts per Step 4 or replace the gaskets and retest.

Perform hydrostatic test with a liquid and follow proper hydrostatic test procedures.

Appendix A. List of Parameters

Table 15. Fieldbus Parameters

		DO.		
Rel Index	Parameter Name	RO or R/W	Initial Factory Settings	Comments
	Network Configuration			
	PD_TAG	R/W	Unique Device ID	
	NODE_ADDRESS	R/W	Unique to a segment	
	Resource Block			
	BLOCK_TAG	R/W	RB(300)	Unique Block ID
1	ST_REV	RO	current rev	Static Data revision level
2	TAG_DESC	R/W	blank	User description of the block application
3	STRATEGY	R/W	0	To ID groups of blocks
4	ALERT_KEY	R/W	0	ID number of the plant unit
5	MODE_BLK			
	Target	R/W	OOS	Mode requested by operator
	Actual	RO	OOS	The current mode of the block
	Permitted	R/W	Auto, OOS	Modes allowed for this block
	Normal	R/W	Auto	Mode of block during normal operations
6	BLOCK_ERR	RO	OutOfService	Error status of the hardware or software
7	RS_STATE	RO	Standby	State of the function block application
8	TEST_RW	R/W		Test parameter used only for conformance testing.
9	DD_RESOURCE	RO		Tag of the resource identifying the DD
10	MANUFAC_ID	RO	Foxboro	Manufacturer ID number
11	DEV_TYPE	RO	BA30	Manufacturer Model number
12	DEV_REV	RO	current device rev	Device revision number
13	DD_REV	RO	01	Initial DD revision number
14	GRANT_DENY			Options for controlling access of host
	Grant	R/W	0 (none selected)	computers and local control panels to
	Deny	R/W	0 (none selected	operating, tuning, and alarm parameters.
15	HARD_TYPES	RO	Scalar Input	Type of hardware available to this resource
16	RESTART	R/W	Run	Defines the type of restart to be initiated
17	FEATURES	RO	Reports, Hard W Lock Chg Bypass in Auto	Shows supported Resource Block options
18	FEATURE_SEL	R/W	Hard W Lock	Used to select Resource Block options

Table 15. Fieldbus Parameters (Continued)

Rel Index	Parameter Name	RO or R/W	Initial Factory Settings	Comments
19	CYCLE_TYPE	RO	Scheduled Block execution	Block execution methods available
20	CYCLE_SEL	R/W	0 (none selected)	Used to select Cycle Type
21	MIN_CYCLE_T	RO	1900 1/32 ms	Duration of the shortest cycle interval
22	MEMORY_SIZE	RO	0	Available config memory in the empty resource
23	NV_CYCLE_T	RO	480000 1/32 ms	Interval between writes to nonvolatile memory
24	FREE_SPACE	RO	0	% of memory available for further configuration
25	FREE_TIME	RO	0	% of block processing time available
26	SHED_RCAS	R/W	640000 1/32 ms	Timeout for write attempts to RCas locations
27	SHED_ROUT	R/W	640000 1/32 ms	Timeout for write attempts to ROut locations
28	FAULT_STATE	RO	Clear	When active, causes all output function flocks in the resource to go to the condition chosen by the fault state Type I/O option
29	SET_FSTATE	R/W	Off	Allows faultstate conditions to be manually set
30	CLR_FSTATE	R/W	Off	Allows faultstate conditions to be cleared
31	MAX_NOTIFY	RO	8	Maximum number of unconfirmed alert notify messages possible
32	LIM_NOTIFY	R/W	8	Maximum number of unconfirmed alert notify messages allowed
33	CONFIRM_TIME	R/W	640000 1/32 ms	Minimum time between retries of alert reports
34	WRITE_LOCK	R/W	Not Locked	Locked setting prevents writing changes if FEATURE_SEL is set to Hard W Lock and the write protection jumper is in the locked position.
35	UPDATE_EVT	RO		Generated by any change to static data of the block
36	BLOCK_ALM	RO		For all configuration, hardware, connection failure, or system problems

Table 15. Fieldbus Parameters (Continued)

Rel Index	Parameter Name	RO or R/W	Initial Factory Settings	Comments
37	ALARM_SUM			The current alert status
	Current	RO	0	The active state of each alarm
	Unacknowledged	RO	0	The unacknowledged state of each alarm
	Unreported	RO	0	The unreported state of each alarm
	Disabled	R/W	no alarms disabled	The disabled state of each alarm
38	ACK_OPTION	R/W	no alarms auto ack'd	Selection of which alarms are automatically acknowledged
39	WRITE_PRI	R/W	0	Priority of alarm generated by clearing write lock
40	WRITE_ALM	RO		Alert generated if the write lock parameter is cleared
41	ITK_VER	RO	5	Revision to which the DD has been tested
42	BLOCK_ERR_DESC_ 1	RO	0	Details of a block error.

	Transducer Block			
	BLOCK_TAG	R/W	TR(550)	Unique Block ID
1	ST_REV	RO	current rev	Static data revision
2	TAG_DESC	R/W	blank	User description of the block application
3	STRATEGY	R/W	0	To ID groups of blocks
4	ALERT_KEY	R/W	0	ID number of plant unit
5	MODE_BLK			
	Target	R/W	Auto	Mode requested by operator
	Actual	RO	Auto	The current mode of the block
	Permitted	R/W	Auto, OOS	Modes allowed for this block
	Normal	R/W	Auto	Mode of block during normal operations
6	BLOCK_ERR	RO	OutOfService	Error status of the hardware or software
7	UPDATE_EVT	RO		Generated by any change to static data of the block
8	BLOCK_ALM	RO		For all configuration, hardware, connection failure, or system problems
9	TRANSDUCER _DIRECTORY	RO	0	Dir that specifies the number & start of data collection
10	TRANSDUCER_TYPE	RO	Std press w/calib	Identifies the transducer
11	XD_ERROR	RO	0	Transducer block alarm subcode
12	COLLECTION _DIRECTORY	RO	0	Directory that specifies the number & start of each transducer

Table 15. Fieldbus Parameters (Continued)

Rel		RO or	Initial Factory	
Index	Parameter Name	R/W	· · · · · · · · · · · · · · · · · · ·	Comments
13	PRIMARY_VALUE TYPE	RO	Differential Pressure	Type of measurement of the primary value
14	PRIMARY_VALUE		riessuie	
	Status Status	RO	GoodNonCascade, NonSpecific, NotLimited	Set by transmitter - status of measurement value
	Value	RO	0	Numerical quantity calculated by the transmitter
15	PRIMARY_VALUE _RANGE			The range, units, and precision of the primary value
	EU_at_100%	R/W	per sales order ⁽¹⁾	The engineering units value at 100% of range
	EU_at_0%		per sales order ⁽¹⁾	The engineering units value at 0% of range
	Units_Index	R/W	per sales order ⁽¹⁾	Engineering units for the primary value
	Decimal	R/W	5 (or per S.O.)	The number of digits to the right of the decimal point
16	CAL_POINT_HI		Same as PV Range	The highest calibrated value
17	CAL_POINT_LO	R/W	Same as PV Range	The lowest calibrated value
18	CAL_MIN_SPAN	RO	per device	The minimum calibration span
19	CAL_UNIT	R/W	Same as PV Range	Engineering units during last calibration
20	SENSOR_TYPE	R/W	Strain Gauge	The type of sensor
21	SENSOR_RANGE	RO	per device	The high and low range limits of the sensor, engineering units and digits to the right of the decimal point
22	SENSOR_SN	RO	per device	The sensor serial number
23	SENSOR_CAL _METHOD	R/W	0 (none selected)	The method of last sensor calibration
24	SENSOR_CAL_LOC	R/W	Foxboro MA	The last calibration location
25	SENSOR_CAL_DATE	R/W	mm/dd/yy; hh:mm:ss	The date of the last sensor calibration
26	SENSOR_CAL_WHO	R/W	Foxboro	The name of the person responsible for the last calibration
27	SENSOR_ISOLATOR _MTL	RO	0	The material of the isolating diaphragms
28	SENSOR_FILL _FLUID	RO	0	The type of sensor fill fluid

Table 15. Fieldbus Parameters (Continued)

Rel		RO or	Initial Factory			
Index	Parameter Name	R/W	Settings	Comments		
29	SECONDARY_VALUE					
	Status	RO	Bad, OutOfService, NotLimited	Set by transmitter - status of measurement value		
	Value	RO	0	Numerical quantity calculated by the transmitter or entered by the user		
30	SECONDARY_VALUE _UNIT	RO	°C (or per S.O.)	The engineering unit of the secondary value		
31	THIRD_VALUE			Shows flow rate as a percentage of flow		
	Status	RO	Bad, OutOfService, NotLimited	Set by transmitter - status of measurement value		
	Value	RO	0	Numerical quantity calculated by the transmitter or entered by the user		
32	THIRD_VALUE _RANGE			The range, units, and precision of the third value		
	EU_at_100%	RO	100 (or per S.O.)	The engineering units value at 100% of range		
	EU_at_0%	RO	0 (or per S.O.)	The engineering units value at 0% of range		
	Units_Index	R/W	inH ₂ 0 (or per S.O.)	Engineering units for the third value		
	Decimal	R/W	5 (or per S.O.)	The number of digits to the right of the decimal point		
33	THIRD_VALUE_TYP E	R/W	Pressure Linear	Type of measurement of the third value		
34	SENSOR_DAMPING	R/W	0	The value of the sensor board M1DAMP parameter		
35	FACTORY_STATUS	RO	0	Diagnostic parameter reserved for Foxboro use.		
36	SENSOR_STATUS	RO	0	Set by transmitter - status of the sensor.		
37	TRANSDUCER _COMMAND	R/W	0	Diagnostic parameter reserved for Foxboro use.		
38	TRANSDUCER _RESPONSE	RO	0	Diagnostic parameter reserved for Foxboro use.		
39	MAU_SW_REVISION	RO	current rev	MAU firmware version		
40	SB_SW_REVISION	RO	current rev	SB firmware version		
41	BLOCK_ERR_DESC_ 1	RO	0	Details of a block error.		

Table 15. Fieldbus Parameters (Continued)

Rel		RO or	Initial Factory	
Index	Parameter Name	R/W	Settings	Comments
	Analog Input Blocks			
	BLOCK_TAG	R/W	AI1(350) or AI2(400)	Unique Block ID
1	ST_REV	RO	current rev	Static data revision
2	TAG_DESC	R/W	blank	User description of the block application
3	STRATEGY	R/W	0	To ID groups of blocks
4	ALERT_KEY	R/W	0	ID number of plant unit
5	MODE_BLK			
	Target	R/W	OOS	Mode requested by operator
	Actual	RO	OOS	The current mode of the block
	Permitted	R/W	Auto, OOS, Man	Modes allowed for this block
	Normal	R/W	Auto	Mode of block during normal operations
6	BLOCK_ERR	RO	OutOfService	Error status of the hardware or software
7	PV			
	Status	RO	Bad, NonSpecific, NotLimited	The status of this block
	Value	RO	0	The value of this block
8	OUT			
	Status	RO	Bad, OutOfService, NotLimited	The status of this block
	Value	Note 2	0	The primary analog value calculated by the transmitter or entered by the user in Manual mode
9	SIMULATE			Simulates the transducer input or output to this block
	Simulate Status			
	Quality	R/W	Bad	Quality of the measurement
	Substatus	R/W	NonSpecific	Substatus
	Limits	R/W	NotLimited	Limits
	Simulate Value	R/W	0	Used for the transducer value when simulation is enabled
	Transducer Status	RO	Bad, NonSpecific, NotLimited	Set by transmitter - status of the transducer
	Transducer Value	RO	0	Current value supplied by the transducer
	Enable/Disable	R/W	Disabled	Enable/disable simulation

Table 15. Fieldbus Parameters (Continued)

		DO.		
Rel Index	Parameter Name	RO or R/W	Initial Factory Settings	Comments
10	XD_SCALE			The range, units, and precision of XD_SCALE
	EU_at_100%	R/W	100	The engineering units value at 100% of range
	EU_at_0%	R/W	0	The engineering units value at 0% of range
	Units_Index	R/W	inH2O	Engineering units for the transducer value
	Decimal	R/W	5	The number of digits to the right of the decimal point
11	OUT_SCALE			The range, units, and precision of OUT_SCALE
	EU_at_100%	R/W	100	The engineering units value at 100% of range
	EU_at_0%	R/W	0	The engineering units value at 0% of range
	Units_Index	R/W	%	Engineering units for the output value
	Decimal	R/W	5	The number of digits to the right of the decimal point
12	GRANT_DENY			Options for controlling access of host
	Grant	R/W	0 (none selected)	computers and local control panels to
	Deny	R/W	0 (none selected)	operating, tuning, and alarm parameters
13	IO_OPTS	R/W	0 (none selected)	Options to alter input and output block processing
14	STATUS_OPTS	R/W	0 (none selected)	Options for block processing of status
15	CHANNEL	R/W	AI1 = pressure AI2 = STemp	The logical channel connected to this block - Channel 1 is pressure, Channel 2 is sensor temperature, and Channel 3 is flow
16	L_TYPE	Note 2	Indirect	Determines if value is to be used directly or converted
17	LOW_CUT	R/W	0	Not Applicable. Only used in square root processing
18	PV_FTIME	R/W	0	Time constant of a single exponential filter for the PV, in seconds.
19	FIELD_VAL			
	Status	RO	Bad, NonSpecific, NotLimited	Status of transducer condition before signal characterization or filtering
	Value	RO	0	Raw value of the field device in % of PV range
20	UPDATE_EVT	RO		Generated by any change to static data of the block

Table 15. Fieldbus Parameters (Continued)

Rel Index	Parameter Name	RO or R/W	Initial Factory Settings	Comments
21	BLOCK_ALM	RO		For all configuration, hardware, connection failure, or system problems
22	ALARM_SUM			The current alert status
	Current	RO	0	The active state of each alarm
	Unacknowledged	RO	0	The unacknowledged state of each alarm
	Unreported	RO	0	The unreported state of each alarm
	Disabled	R/W	no alarms disabled	The disabled state of each alarm
23	ACK_OPTION	R/W	no alarms auto ack'd	Selection of which alarms are automatically acknowledged
24	ALARM_HYS	R/W	0.5%	Amount the PV must return within alarm limits before the alarm condition clears
25	HI_HI_PRI	R/W	0	Priority of the High-High alarm
26	HI_HI_LIM	R/W	1.#INF	The setting for High-High alarm in engineering units
27	HI_PRI	R/W	0	Priority of the High alarm
28	HI_LIM	R/W	1.#INF	The setting for High alarm in engineering units
29	LO_PRI	R/W	0	Priority of the Low alarm
30	LO_LIM	R/W	-1.#INF	The setting for Low alarm in engineering units
31	LO_LO_PRI	R/W	0	Priority of the Low-Low alarm
32	LO_LO_LIM	R/W	-1.#INF	The setting for Low-Low alarm in engineering units
33	HI_HI_ALM	RO	0	The status of the High-High alarm
34	HI_ALM	RO	0	The status of the High alarm
35	LO_ALM	RO	0	The status of the Low alarm
36	LO_LO_ALM	RO	0	The status of the Low-Low alarm
37	BLOCK_ERR_DESC_ 1	RO	0	Details of a block error.

	PID Block				
	BLOCK_TAG	R/W	PID(450)	Unique Block ID	
1	ST_REV	RO	current rev	Static data revision	
2	TAG_DESC	R/W	blank	User description of the block application	
3	STRATEGY	R/W	0	To ID groups of blocks	
4	ALERT_KEY	R/W	0	ID number of plant unit	

Table 15. Fieldbus Parameters (Continued)

Rel Index	Parameter Name	RO or R/W	Initial Factory Settings	Comments
5	MODE_BLK			
	Target	R/W	OOS	Mode requested by operator
	Actual	RO	OOS	The current mode of the block
	Permitted	R/W	Auto, Man, OOS, ROut, RCas, Cas	Modes allowed for this block
	Normal	R/W	Auto	Mode of block during normal operations
6	BLOCK_ERR	RO	Out of Service	Error status of the hardware or software
7	PV			
	Status	RO	Bad; NonSpecific; NotLimited	The status of this parameter
	Value	RO	0	The value of this parameter
8	SP			The value and status for this parameter
	Status	RO	Bad; OutOfService; NotLimited	The setpoint status is determined by the transmitter
	Value	Note 3	0	The setpoint value must be written even if correctly shown
9	OUT			
	Status	RO	Bad; OutOfService; NotLimited	The status of the output of this block
	Value	Note 2	0	The primary analog value calculated by the transmitter or entered by the user in Manual mode
10	PV_SCALE			The range, units, and precision of the PV parameter
	EU_at_100%	R/W	100	The engineering units value at 100% of range
	EU_at_0%	R/W	0	The engineering units value at 0% of range
	Units_Index	R/W	%	Engineering units
	Decimal	R/W	5	The number of digits to the right of the decimal point

Table 15. Fieldbus Parameters (Continued)

Rel Index	Parameter Name	RO or R/W	Initial Factory Settings	Comments
11	OUT_SCALE			The range, units, and precision of the OUT parameter
	EU_at_100%	R/W	100	The engineering units value at 100% of range
	EU_at_0%	R/W	0	The engineering units value at 0% of range
	Units_Index	R/W	%	Engineering units
	Decimal	R/W	5	The number of digits to the right of the decimal point
12	GRANT_DENY			Options for controlling access of host
	Grant	R/W	0 (none selected)	computers and local control panels to
	Deny	R/W	0 (none selected)	operating, tuning, and alarm parameters
13	CONTROL_OPTS	R/W	0 (none selected)	Options to alter calculations in the control block
14	STATUS_OPTS	R/W	0 (none selected)	Options for block processing of status
15	IN			
	Status	Note 4	Bad; NotConnected; NotLimited	The status of this block
	Value		0	The primary input value of this block
16	PV_FTIME	R/W	0	Time constant of a single exponential filter for the PV in seconds.
17	BYPASS	R/W	0 (none selected)	Enables the normal control algorithm to be bypassed
18	CAS_IN			The remote setpoint status and value
	Status	Note	Bad; NotConnected; NotLimited	The status of this block
	Value		0	The value of this block
19	SP_RATE_DN	R/W		Ramp rate at which downward setpoint changes are acted upon in Auto mode
20	SP_RATE_UP	R/W		Ramp rate at which upward setpoint changes are acted upon in Auto mode
21	SP_HI_LIM	R/W		Setpoint high limit
22	SP_LO_LIM	R/W		Setpoint low limit
23	GAIN	R/W		Value used by the block algorithm in calculating the block output
24	RESET	R/W		Integral time constant in seconds per repeat
25	BAL_TIME	R/W	0	Time for internal working value of bias or ratio to return to the operator set bias or ratio in seconds

Table 15. Fieldbus Parameters (Continued)

Rel		RO or	Initial Factory	
Index	Parameter Name	R/W	•	Comments
26	RATE	R/W	0	Derivative time constant in seconds
27	BKCAL_IN			Value and status from a lower block's BKCAL_OUT
	Status	Note 4	Bad; NotConnected; NotLimited	The status of this block
	Value		0	The value of this block
28	OUT_HI_LIM	R/W	100	Limits the maximum output value
29	OUT_LO_LIM	R/W	0	Limits the minimum output value
30	BKCAL_HYS	R/W	0.5	Amount the output must change away from its output limit before the limit status is turned off (in % of span of the output)
31	BKCAL_OUT			Value and status from an upper block's BKCAL_IN
	Status	RO	Bad; NonSpecific; NotLimited	The status of this block
	Value	RO	0	The value of this block
32	RCAS_IN			Target setpoint and status provided by a supervisory host to an analog control or output block
	Status	R/W	Bad; OutOfService; NotLimited	The status of this block
	Value	R/W	0	The value of this block
33	ROUT_IN			Target setpoint and status provided by a host to the control block for use as the output
	Status	R/W	Bad; OutOfService; NotLimited	The status of this block
	Value	R/W	0	The value of this block
34	SHED_OPT	R/W	0 (uninitialized)	Action to be taken on remote control device timeout
35	RCAS_OUT			Block setpoint and status after ramping
	Status	RO	Bad; NonSpecific; NotLimited	The status of this block
	Value	RO	0	The value of this block
36	ROUT_OUT			Block output and status provided to a host
	Status	RO	Bad; NonSpecific; NotLimited	The status of this block
	Value	RO	0	The value of this block

Table 15. Fieldbus Parameters (Continued)

Rel Index	Parameter Name	RO or R/W	Initial Factory Settings	Comments
37	TRK_SCALE			The range, units, and precision associated with TRK_VALr
	EU_at_100%	R/W	100	Engineering units value at 100% of scale
	EU_at_0%	R/W	0	Engineering units value at 0% of scale
	Units_Index	R/W	%	Engineering units
	Decimal	R/W	5	The number of digits to the right of the decimal point
38	TRK_IN_D			Used to initiate external tracking of the block output to the value specified in TRK_VAL
	Status	Note 4	Bad; NotConnected; NotLimited	The status of this block
	Value		0	The value of this block
39	TRK_VAL			Input used as the track value when external tracking is enabled by TRK_IN_D
	Status	Note 4	Bad; NotConnected; NotLimited	The status of this block
	Value		0	The value of this block
40	FF_VAL			The feed forward status and value
	Status	Note 4	Bad; NotConnected; NotLimited	The status of this block
	Value		0	The value of this block
41	FF_SCALE			The range, units and precision of the feed forward input
	EU_at_100%	R/W	100	Engineering units value at 100% of scale
	EU_at_0%	R/W	0	Engineering units value at 0% of scale
	Units_Index	R/W	%	Engineering units
	Decimal	R/W	5	The number of digits to the right of the decimal point
42	FF_GAIN	Note 2	0	Gain that the feedforward input is multiplied by before it is added to the calculated control output
43	UPDATE_EVT	RO		Generated by any change to static data of the block
44	BLOCK_ALM	RO		For all config, hardware, connection failures, and system problems
45	ALARM_SUM			
	Current	RO	0	The active state of each alarm
	Unacknowledged	RO	0	The unacknowledged state of each alarm
	Unreported	RO	0	The unreported state of each alarm
	Disabled	R/W		The disabled state of each alarm
46	ACK_OPTION	R/W	no alarms auto ack'd	Selection of which alarms will be automatically ack'd

Table 15. Fieldbus Parameters (Continued)

Rel Index	Parameter Name	RO or R/W	Initial Factory Settings	Comments
47	ALARM_HYS	R/W	0.5%	Amount the PV must return within alarm limits before the alarm condition clears
48	HI_HI_PRI	R/W	0	Priority of the High-High alarm (0-15)
49	HI_HI_LIM	R/W	+INF	Setting of High-High alarm in engineering units
50	HI_PRI	R/W	0	Priority of the High alarm (0-15)
51	HI_LIM	R/W	+INF	Setting of High alarm in engineering units
52	LO_PRI	R/W	0	Priority of the Low alarm (0-15)
53	LO_LIM	R/W	-INF	Setting for Low alarm in engineering units
54	LO_LO_PRI	R/W	0	Priority of the Low-Low alarm (0-15)
55	LO_L0_LIM	R/W	-INF	Setting of Low-Low alarm in engineering units
56	DV_HI_PRI	R/W	0	Priority for the high deviation alarm
57	DV_HI_LIM	R/W	+INF	Setting of high deviation alarm in engineering units
58	DV_LO_PRI	R/W	0	Priority for the low deviation alarm
59	DV_LO_LIM	R/W	-INF	Setting of low deviation alarm in engineering units
60	HI_HI_ALM	RO	0	Status and Value of the High-High alarm
61	HI_ALM	RO	0	Status and Value of the High alarm
62	LO_ALM	RO	0	Status and Value of the Low alarm
63	LO_LO_ALM	RO	0	Status and Value of the Low-Low alarm
64	DV_HI_ALM	RO	0	Status and Value of the High Deviation Alarm
65	DV_LO_ALM	RO	0	Status and Value of the Low Deviation Alarm
66	BLOCK_ERR_DESC_ 1	RO	0	Details of a block error.

⁽¹⁾Transmitter parameters are configured as follows if calibrated range is not provided with the order: Span Code A: 0 to 30 inH₂O; Span Code B: 0 to 200 inH₂O; Span Code C: 0 to 840 inH₂O; Span Code D: 0 to 300 psi; Span Code E:0 to 3000 psi.

⁽²⁾ R/W only in Manual or Out of Service mode.

⁽³⁾ R/W only in Auto, ROut, or Out of Service

⁽⁴⁾ R/W only when communication link not connected.

Index

B Block Errors 65
C Calibration 39 From a Fieldbus Host 44 Setup 39 Using the Optional Local Display 41 Configuration 47 From a Fieldbus Host 53 Using the Optional Local Display 47 Cover Locks 27
D Display, Positioning the 26
HHousing, Positioning the 26
I Identification Transmitter 3 Installation 13
L Link Active Scheduler (LAS), Disabling the 62
M Maintenance 63 Mounting 13
Operation Via Local Display 35
P Parameters, List of 75 Parts Replacement 68

MI IDP10-F – May 2010 Index

Piping, Installation of Flow Measurement 22

R

Reference Documents 2 Restart 64

S

Seal Liquid, Filling the System with 25 Simulation Mode 63 Software, Installing Fiekdbus 31 Specifications Product Safety 10 Standard 5

T

Troubleshooting 63

W

Wiring 27
Write Protect Jumper, Setting the 27

Z

Zero Adjustment Using External Zero Button 43

ISSUE DATES

DEC 2001

OCT 2003

APR 2004

FEB 2005 JUN 2005

SEP 2005

FEB 2006

OCT 2007

MAY 2008

MAY 2010

Vertical lines to the right of text or illustrations indicate areas changed at last issue date.

Invensys Operations Management 5601 Granite Parkway Suite 1000 Plano, TX 75024 United States of America http://www.iom.invensys.com

Global Customer Support Inside U.S.: 1-866-746-6477 Outside U.S.:1-508-549-2424 or contact your local Invensys representative. Email: support@invensys.com

ontact Copy All rig

Copyright 2001-2010 Invensys Systems, Inc.

Invensys plc, its subsidiaries, and affiliates.

respective owners.

Invensys, Foxboro, and I/A Series are trademarks of

All other brand names may be trademarks of their

Copyright 2001-2010 Invensys Systems, Inc All rights reserved

0510